We are to maximize \( x^4 y^6 z^5 \) subject to the constraint \( x + y + z = 45 \).
This is a standard constrained optimization problem using Lagrange multipliers.
Let \( f(x, y, z) = x^4 y^6 z^5 \), and \( g(x, y, z) = x + y + z - 45 = 0 \)
Using Lagrange multipliers, we solve:
\[
\nabla f = \lambda \nabla g
\Rightarrow \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = \lambda (1, 1, 1)
\]
\[
\Rightarrow \frac{4}{x} = \frac{6}{y} = \frac{5}{z}
\Rightarrow x : y : z = \frac{1}{4} : \frac{1}{6} : \frac{1}{5} \Rightarrow 15 : 10 : 12
\]
Let \( x = 15k, y = 10k, z = 12k \). Then:
\[
x + y + z = 15k + 10k + 12k = 37k = 45 \Rightarrow k = \frac{45}{37}
\]
Now,
\[
\frac{\alpha + \beta}{\gamma} = \frac{x + y}{z} = \frac{15k + 10k}{12k} = \frac{25k}{12k} = \frac{25}{12} \approx 2.08
\Rightarrow \boxed{2}
\]