To find \( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \), we start by considering \( u = f(r) \) where \( r = \sqrt{x^2 + y^2 + z^2} \). Thus, \( r^2 = x^2 + y^2 + z^2 \).
First, find the partial derivatives of \( u \):
\[\frac{\partial u}{\partial x} = \frac{df}{dr}\cdot\frac{\partial r}{\partial x}\]
Given \( r = (x^2 + y^2 + z^2)^{1/2} \), the partial derivatives of \( r \) are:
\[\frac{\partial r}{\partial x} = \frac{x}{r},\quad \frac{\partial r}{\partial y} = \frac{y}{r},\quad \frac{\partial r}{\partial z} = \frac{z}{r}\]
Hence,
\[\frac{\partial u}{\partial x} = f'(r)\cdot\frac{x}{r},\quad \frac{\partial u}{\partial y} = f'(r)\cdot\frac{y}{r},\quad \frac{\partial u}{\partial z} = f'(r)\cdot\frac{z}{r}\]
Now, find the second derivatives:
\[\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x}(f'(r)\cdot\frac{x}{r})\]
Applying the product rule:
\[\frac{\partial^2 u}{\partial x^2} = f''(r)\cdot\left(\frac{x}{r}\right)^2 + f'(r)\cdot\left(\frac{1}{r} - \frac{x^2}{r^3}\right)\]
Similarly:
\[\frac{\partial^2 u}{\partial y^2} = f''(r)\cdot\left(\frac{y}{r}\right)^2 + f'(r)\cdot\left(\frac{1}{r} - \frac{y^2}{r^3}\right)\]
\[\frac{\partial^2 u}{\partial z^2} = f''(r)\cdot\left(\frac{z}{r}\right)^2 + f'(r)\cdot\left(\frac{1}{r} - \frac{z^2}{r^3}\right)\]
Adding these gives:
\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f''(r)\cdot\left(\frac{x^2 + y^2 + z^2}{r^2}\right) + f'(r)\cdot\left(\frac{3}{r} - \frac{x^2 + y^2 + z^2}{r^3}\right)\]
Since \( x^2 + y^2 + z^2 = r^2 \), the equation simplifies to:
\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f''(r) + \frac{2}{r}f'(r)\]
Hence, the correct answer is \( f''(r) + \frac{2}{r} f'(r) \).