\( A = \begin{bmatrix} 1 & -5 & 2 \\ 7 & 0 & 6 \\ 5 & -3 & 7 \end{bmatrix} \)
\( B = \begin{bmatrix} 1 & 6 & 7 \\ 3 & 8 & 4 \\ 7 & 6 & 1 \end{bmatrix} \)
Given conditions:
For \( A + C \) to be symmetric:
\( A + C = (A + C)^T = A^T + C^T \)
\( \Rightarrow C - C^T = A^T - A \)
For \( A - C \) to be skew-symmetric:
\( A - C = -(A - C)^T = -A^T + C^T \)
\( \Rightarrow C + C^T = A + A^T \)
Adding both equations:
\( 2C = 2A^T \Rightarrow C = A^T \)
Thus:
\( C = A^T = \begin{bmatrix} 1 & 7 & 5 \\ -5 & 0 & -3 \\ 2 & 6 & 7 \end{bmatrix} \)
Given \( B = D^T \), then:
\( D = B^T = \begin{bmatrix} 1 & 3 & 7 \\ 6 & 8 & 6 \\ 7 & 4 & 1 \end{bmatrix} \)
Since \( D^T = B \):
\( C - D^T = A^T - B = \)
\(\begin{bmatrix} 1 &7 &5\\-5 &0 &-3\\2 &6& 7\end{bmatrix} \) - \(\begin{bmatrix}1& 6& 7\\3& 8& 4\\7 &6 &1\end{bmatrix} \) = \( \begin{bmatrix} 0 &1 &-2\\-8& -8& -7\\-5 &0 &6\end{bmatrix}\)
Transpose the result from Step 3:
\( \left( C - D^T \right)^T = \begin{bmatrix} 0 & -8 & -5 \\ 1 & -8 & 0 \\ -2 & -7 & 6 \end{bmatrix} \)
\( \boxed{\begin{bmatrix} 0 & -8 & -5 \\ 1 & -8 & 0 \\ -2 & -7 & 6 \end{bmatrix}} \)
Correct Option: 4