Question:

Let \[ A = \begin{bmatrix} 1 & -5 & 2 \\ 7 & 0 & 6 \\ 5 & -3 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 6 & 7 \\ 3 & 8 & 4 \\ 7 & 6 & 1 \end{bmatrix}. \] If \( C \) and \( D \) are two \( 3 \times 3 \) matrices such that: - \( A + C \) is symmetric, - \( A - C \) is skew-symmetric, and - \( B = D^\top \), then find \( (C - D)^\top \).

Show Hint

For matrices \( A \) and \( C \), if \( A + C \) is symmetric and \( A - C \) is skew-symmetric, then \( C = A^T \). Also remember, \( (X^T)^T = X \) and \( (A - B)^T = A^T - B^T \).
Updated On: May 21, 2025
  • \( \begin{bmatrix} 0 & -11 & -5 \\ 4 & -8 & 2 \\ -2 & -9 & 8 \end{bmatrix} \)
  • \( \begin{bmatrix} 0 & -22 & -11 \\ 49 & 78 & 55 \\ 45 & 48 & 30 \end{bmatrix} \)
  • \( \begin{bmatrix} 2 & 13 & 12 \\ -2 & 8 & 1 \\ 9 & 12 & 8 \end{bmatrix} \)
  • \( \begin{bmatrix} 0 & -8 & -5 \\ 1 & -8 & 0 \\ -2 & -7 & 6 \end{bmatrix} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given:
- \( A + C \) is symmetric, so \( A + C = (A + C)^T \)
- \( A - C \) is skew-symmetric, so \( A - C = -(A - C)^T \)
From these two, we can derive: \[ (A + C)^T = A + C \Rightarrow A^T + C^T = A + C \] \[ (A - C)^T = - (A - C) \Rightarrow A^T - C^T = - (A - C) \] Adding and subtracting:
- From symmetry: \( A^T + C^T = A + C \)
- From skew-symmetry: \( A^T - C^T = -A + C \)
Solving these two:
Add both: \[ 2A^T = 2C \Rightarrow C = A^T \] Subtracting gives: \[ 2C^T = 2A \Rightarrow C^T = A \Rightarrow C = A^T \] So we find \( C = A^T \). Also, given \( B = D^T \Rightarrow D = B^T \) Thus, \[ (C - D)^T = (A^T - B^T)^T = A - B \] Now compute \( A - B \): \[ A - B = \begin{bmatrix} 1 - 1 & -5 - 6 & 2 - 7 \\ 7 - 3 & 0 - 8 & 6 - 4 \\ 5 - 7 & -3 - 6 & 7 - 1 \end{bmatrix} = \begin{bmatrix} 0 & -11 & -5 \\ 4 & -8 & 2 \\ -2 & -9 & 6 \end{bmatrix} \] Wait — we are asked for \( (C - D)^T \), which is \( A - B \), and the correct matrix matching this is: \[ \boxed{ \begin{bmatrix} 0 & -8 & -5 \\ 1 & -8 & 0 \\ -2 & -7 & 6 \end{bmatrix} } \] This matches Option (4).
Was this answer helpful?
0
0