Step 1: Use integration by parts
Let:
\[
I = \int e^{-2x} \left( \tan 2x - 2\sec^2 2x \tan 2x \right) dx.
\]
Using substitution \( u = \tan 2x \), so that \( du = 2\sec^2 2x dx \):
\[
I = \int e^{-2x} (u - 2 du).
\]
Step 2: Integrate
\[
\int e^{-2x} u dx - 2\int e^{-2x} du.
\]
Solving,
\[
I = -\frac{e^{-2x}}{2} \left[ \sec^2 2x + \tan 2x \right] + c.
\]
Thus, the correct answer is \( \boxed{-\frac{e^{-2x}}{2} \left[ \sec^2 2x + \tan 2x \right] + c} \).