Question:

Evaluate the integral: \[ \int e^{-2x} \left( \tan 2x - 2\sec^2 2x \tan 2x \right) dx. \]

Show Hint

Use substitution when dealing with trigonometric integrals. - Recognizing derivative patterns helps in solving quickly.
Updated On: Mar 11, 2025
  • \( e^{-2x} \tan 2x + c \)
  • \( -\frac{e^{-2x}}{2} \left[ \sec^2 2x + \tan 2x \right] + c \)
  • \( -\frac{e^{-2x}}{2} \left[ \tan 2x - \sec^2 2x \right] + c \)
  • \( -e^{-2x} \sec^2 2x + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation


Step 1: Use integration by parts
Let: \[ I = \int e^{-2x} \left( \tan 2x - 2\sec^2 2x \tan 2x \right) dx. \] Using substitution \( u = \tan 2x \), so that \( du = 2\sec^2 2x dx \): \[ I = \int e^{-2x} (u - 2 du). \] Step 2: Integrate
\[ \int e^{-2x} u dx - 2\int e^{-2x} du. \] Solving, \[ I = -\frac{e^{-2x}}{2} \left[ \sec^2 2x + \tan 2x \right] + c. \] Thus, the correct answer is \( \boxed{-\frac{e^{-2x}}{2} \left[ \sec^2 2x + \tan 2x \right] + c} \).
Was this answer helpful?
0
0