Step 1: Expressing in exponential form.
Since \(|x| = |y| = 1\), we express them as \( x = e^{i 2\alpha} \) and \( y = e^{i 3\beta} \).
Step 2: Evaluating \( x^6 y^4 \).
\[ x^6 y^4 = e^{i(12\alpha + 12\beta)} = e^{i 12 (\alpha + \beta)} = e^{i 12 \frac{\pi}{36}} = e^{i \frac{\pi}{3}} \] \[ \frac{1}{x^6 y^4} = e^{-i \frac{\pi}{3}} \] \[ x^6 y^4 + \frac{1}{x^6 y^4} = e^{i \frac{\pi}{3}} + e^{-i \frac{\pi}{3}} = 2\cos \frac{\pi}{3} = 1 \]
Step 3: Conclusion.
Thus, \( x^6 y^4 + \frac{1}{x^6 y^4} = 1 \).
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to