Step 1: Expressing in exponential form.
Since \(|x| = |y| = 1\), we express them as \( x = e^{i 2\alpha} \) and \( y = e^{i 3\beta} \).
Step 2: Evaluating \( x^6 y^4 \).
\[ x^6 y^4 = e^{i(12\alpha + 12\beta)} = e^{i 12 (\alpha + \beta)} = e^{i 12 \frac{\pi}{36}} = e^{i \frac{\pi}{3}} \] \[ \frac{1}{x^6 y^4} = e^{-i \frac{\pi}{3}} \] \[ x^6 y^4 + \frac{1}{x^6 y^4} = e^{i \frac{\pi}{3}} + e^{-i \frac{\pi}{3}} = 2\cos \frac{\pi}{3} = 1 \]
Step 3: Conclusion.
Thus, \( x^6 y^4 + \frac{1}{x^6 y^4} = 1 \).
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
The system of simultaneous linear equations :
\[ \begin{array}{rcl} x - 2y + 3z &=& 4 \\ 2x + 3y + z &=& 6 \\ 3x + y - 2z &=& 7 \end{array} \]
Calculate the determinant of the matrix:
A, B, C, D are square matrices such that A + B is symmetric, A - B is skew-symmetric, and D is the transpose of C.
If
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix} \]
and
\[ C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]
then the matrix \( B + D \) is: