If the real-valued function
\[ f(x) = \sin^{-1}(x^2 - 1) - 3\log_3(3^x - 2) \]is not defined for all \( x \in (-\infty, a] \cup (b, \infty) \), then what is \( 3^a + b^2 \)?
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).
{If \(f(x)\) is a quadratic function such that \(f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{1-x}\right)\), then \(\sqrt{f\left(\frac{2}{3}\right) + f\left(\frac{3}{2}\right)} =\)}
If \( A = \begin{pmatrix} x & y & y \\ y & x & y \\ y & y & x \end{pmatrix} \) and \( 5A^{-1} = \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} \), then \( A^2 - 4A \) is: