Step 1: Computing class midpoints.
The class midpoints are:
\[
x_i = \frac{\text{Lower Limit} + \text{Upper Limit}}{2}
\]
\[
x_1 = 1, \quad x_2 = 3, \quad x_3 = 5, \quad x_4 = 7, \quad x_5 = 9
\]
Step 2: Computing the mean.
The mean is given by:
\[
\bar{x} = \frac{\sum f_i x_i}{\sum f_i}
\]
\[
= \frac{(1 \times 1) + (3 \times 3) + (5 \times 5) + (3 \times 7) + (1 \times 9)}{1+3+5+3+1}
\]
\[
= \frac{1 + 9 + 25 + 21 + 9}{13} = \frac{65}{13} = 5
\]
Step 3: Computing absolute deviations.
\[
|x_i - \bar{x}|
\]
\[
|1 - 5| = 4, \quad |3 - 5| = 2, \quad |5 - 5| = 0, \quad |7 - 5| = 2, \quad |9 - 5| = 4
\]
Step 4: Computing mean deviation.
\[
MD = \frac{\sum f_i |x_i - \bar{x}|}{\sum f_i}
\]
\[
= \frac{(1 \times 4) + (3 \times 2) + (5 \times 0) + (3 \times 2) + (1 \times 4)}{13}
\]
\[
= \frac{4 + 6 + 0 + 6 + 4}{13} = \frac{20}{13}
\]
Thus, the mean deviation about the mean is:
\[
\mathbf{\frac{20}{13}}
\]