We are given the points \( A(1, 2, -3) \), \( B(2, 3, -1) \), and \( C(3, 1, 1) \), and we need to find \( \left| \frac{\cos A}{\cos B} \right| \).
Step 1: Find the vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \)
The vector \( \overrightarrow{AB} \) is given by:
\[
\overrightarrow{AB} = B - A = (2 - 1, 3 - 2, -1 - (-3)) = (1, 1, 2)
\]
The vector \( \overrightarrow{AC} \) is given by:
\[
\overrightarrow{AC} = C - A = (3 - 1, 1 - 2, 1 - (-3)) = (2, -1, 4)
\]
Step 2: Use the dot product to find \( \cos A \)
The formula for \( \cos A \) is:
\[
\cos A = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| |\overrightarrow{AC}|}
\]
First, compute the dot product \( \overrightarrow{AB} \cdot \overrightarrow{AC} \):
\[
\overrightarrow{AB} \cdot \overrightarrow{AC} = (1)(2) + (1)(-1) + (2)(4) = 2 - 1 + 8 = 9
\]
Now, compute the magnitudes of \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \):
\[
|\overrightarrow{AB}| = \sqrt{(1)^2 + (1)^2 + (2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6}
\]
\[
|\overrightarrow{AC}| = \sqrt{(2)^2 + (-1)^2 + (4)^2} = \sqrt{4 + 1 + 16} = \sqrt{21}
\]
Thus,
\[
\cos A = \frac{9}{\sqrt{6} \times \sqrt{21}} = \frac{9}{\sqrt{126}} = \frac{9}{\sqrt{9 \times 14}} = \frac{3}{\sqrt{14}}
\]
Step 3: Use the dot product to find \( \cos B \)
Next, compute the vector \( \overrightarrow{BC} \):
\[
\overrightarrow{BC} = C - B = (3 - 2, 1 - 3, 1 - (-1)) = (1, -2, 2)
\]
Now, use the formula for \( \cos B \):
\[
\cos B = \frac{\overrightarrow{BC} \cdot \overrightarrow{AC}}{|\overrightarrow{BC}| |\overrightarrow{AC}|}
\]
Compute the dot product \( \overrightarrow{BC} \cdot \overrightarrow{AC} \):
\[
\overrightarrow{BC} \cdot \overrightarrow{AC} = (1)(2) + (-2)(-1) + (2)(4) = 2 + 2 + 8 = 12
\]
Now, compute the magnitude of \( \overrightarrow{BC} \):
\[
|\overrightarrow{BC}| = \sqrt{(1)^2 + (-2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3
\]
Thus,
\[
\cos B = \frac{12}{3 \times \sqrt{21}} = \frac{12}{3\sqrt{21}} = \frac{4}{\sqrt{21}}
\]
Step 4: Find \( \left| \frac{\cos A}{\cos B} \right| \)
Now, we can compute \( \left| \frac{\cos A}{\cos B} \right| \):
\[
\left| \frac{\cos A}{\cos B} \right| = \left| \frac{\frac{3}{\sqrt{14}}}{\frac{4}{\sqrt{21}}} \right|
\]
\[
\left| \frac{\cos A}{\cos B} \right| = \left| \frac{3}{\sqrt{14}} \times \frac{\sqrt{21}}{4} \right|
\]
\[
\left| \frac{\cos A}{\cos B} \right| = \frac{3}{4} \times \frac{\sqrt{21}}{\sqrt{14}} = \frac{3}{4} \times \sqrt{\frac{21}{14}} = \frac{3}{4} \times \sqrt{\frac{3}{2}} = \frac{3\sqrt{3}}{4\sqrt{2}}
\]
Thus, the final answer is \( \frac{\sqrt{3}}{\sqrt{7}} \).
\bigskip