32.71
First, calculate the mean of the data: \[ \text{Mean} = \frac{1 + 2 + 3 + 5 + 8 + 13 + 17}{7} = \frac{49}{7} = 7 \] Next, compute the sum of the squared differences from the mean: \[ \text{Sum of squares} = (1-7)^2 + (2-7)^2 + (3-7)^2 + (5-7)^2 + (8-7)^2 + (13-7)^2 + (17-7)^2 \] \[ = 36 + 25 + 16 + 4 + 1 + 36 + 100 = 218 \] Finally, the variance (\(\sigma^2\)) is calculated as: \[ \sigma^2 = \frac{\text{Sum of squares}}{n} = \frac{218}{7} \approx 31.14 \]
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]
Match the following: