If \[ z = \frac{(2-i)(1+i)^3}{(1-i)^2} \] then \[ \text{Arg}(z) = ? \]
\[ \sin^{-1} x - \cos^{-1} 2x = \sin^{-1} \left(\frac{\sqrt{3}}{2}\right) - \cos^{-1} \left(\frac{\sqrt{3}}{2}\right) \]
Then, \[ \tan^{-1} x + \tan^{-1} \left(\frac{x}{x+1}\right) = ? \]
\[ \text{sech}^{-1}\left(\frac{3}{5}\right) - \text{tanh}^{-1}\left(\frac{3}{5}\right) = ? \]
In a triangle ABC, if \( a = 5 \), \( b = 3 \), and \( c = 7 \), then the ratio:
\[ \sqrt{\frac{\sin(A - B)}{\sin(A + B)}} \]
\[ \begin{array}{c|c} X = x & P(X = x) \\ \hline 1 & 3K^2 \\ 3 & K \\ 5 & K^2 \\ 2 & 2K \end{array} \]
\[ f(x) = \begin{cases} \frac{(4^x - 1)^4 \cot(x \log 4)}{\sin(x \log 4) \log(1 + x^2 \log 4)}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases} \]
Find \( e^k \) if \( f(x) \) is continuous at \( x = 0 \).
\[ y = \sqrt{\sin(\log(2x)) + \sqrt{\sin(\log(2x)) + \sqrt{\sin(\log(2x))} + \dots \infty}} \]