We know that
\[ r_1 = \frac{\Delta}{s - a}, \quad r_2 = \frac{\Delta}{s - b}, \quad r_3 = \frac{\Delta}{s - c}, \quad r = \frac{\Delta}{s}, \]
where \( \Delta \) is the area of triangle \( ABC \), \( s \) is the semiperimeter, and \( a, b, c \) are the side lengths. Then
\[ r_1 r_2 + rr_3 = \frac{\Delta}{s - a} \cdot \frac{\Delta}{s - b} + \frac{\Delta}{s} \cdot \frac{\Delta}{s - c} \]
\[ = \frac{\Delta^2}{(s - a)(s - b)} + \frac{\Delta^2}{s(s - c)} \]
\[ = \Delta^2 \cdot \frac{s(s - c) + (s - a)(s - b)}{s(s - a)(s - b)(s - c)} \]
\[ = \Delta^2 \cdot \frac{s^2 - cs + s^2 - as - bs + ab}{s(s - a)(s - b)(s - c)} \]
\[ = \Delta^2 \cdot \frac{2s^2 - (a + b + c)s + ab}{s(s - a)(s - b)(s - c)} \]
\[ = \Delta^2 \cdot \frac{2s^2 - 2s^2 + ab}{s(s - a)(s - b)(s - c)} \]
\[ = \frac{ab \Delta^2}{s(s - a)(s - b)(s - c)}. \]
By Heron's formula,
\[ \Delta = \sqrt{s(s - a)(s - b)(s - c)}, \]
so
\[ \Delta^2 = s(s - a)(s - b)(s - c). \]
Hence,
\[ r_1 r_2 + rr_3 = \frac{ab \Delta^2}{s(s - a)(s - b)(s - c)} = ab. \]
Similarly,
\[ r_2 r_3 + rr_1 = bc, \quad r_3 r_1 + rr_2 = ca, \]
so we can write the given equations as
\[ ab = 35, \quad bc = 63, \quad ca = 45. \]
Multiplying all these equations, we get
\[ (ab)(bc)(ca) = 35 \cdot 63 \cdot 45 = 99225, \]
so
\[ a^2 b^2 c^2 = 99225. \]
Then
\[ abc = \sqrt{99225} = 315. \]
Dividing \( abc = 315 \) by \( ab = 35 \), we get
\[ c = \frac{315}{35} = 9. \]
Dividing \( abc = 315 \) by \( bc = 63 \), we get
\[ a = \frac{315}{63} = 5. \]
Dividing \( abc = 315 \) by \( ca = 45 \), we get
\[ b = \frac{315}{45} = 7. \]
Then
\[ 2s = a + b + c = 5 + 7 + 9 = 21, \]
so the answer is \( \boxed{21} \).
Let \( \bar{a}, \bar{b}, \bar{c} \) be three vectors each having \( \sqrt{2} \) magnitude such that
\[ (\bar{a}, \bar{b}) = (\bar{b}, \bar{c}) = (\bar{c}, \bar{a}) = \frac{\pi}{3}. \]
If
\[ \bar{x} = \bar{a} \times (\bar{b} \times \bar{c}) \quad \text{and} \quad \bar{y} = \bar{b} \times (\bar{c} \times \bar{a}), \]
then: