We know that
\[ r_1 = \frac{\Delta}{s - a}, \quad r_2 = \frac{\Delta}{s - b}, \quad r_3 = \frac{\Delta}{s - c}, \quad r = \frac{\Delta}{s}, \]
where \( \Delta \) is the area of triangle \( ABC \), \( s \) is the semiperimeter, and \( a, b, c \) are the side lengths. Then
\[ r_1 r_2 + rr_3 = \frac{\Delta}{s - a} \cdot \frac{\Delta}{s - b} + \frac{\Delta}{s} \cdot \frac{\Delta}{s - c} \]
\[ = \frac{\Delta^2}{(s - a)(s - b)} + \frac{\Delta^2}{s(s - c)} \]
\[ = \Delta^2 \cdot \frac{s(s - c) + (s - a)(s - b)}{s(s - a)(s - b)(s - c)} \]
\[ = \Delta^2 \cdot \frac{s^2 - cs + s^2 - as - bs + ab}{s(s - a)(s - b)(s - c)} \]
\[ = \Delta^2 \cdot \frac{2s^2 - (a + b + c)s + ab}{s(s - a)(s - b)(s - c)} \]
\[ = \Delta^2 \cdot \frac{2s^2 - 2s^2 + ab}{s(s - a)(s - b)(s - c)} \]
\[ = \frac{ab \Delta^2}{s(s - a)(s - b)(s - c)}. \]
By Heron's formula,
\[ \Delta = \sqrt{s(s - a)(s - b)(s - c)}, \]
so
\[ \Delta^2 = s(s - a)(s - b)(s - c). \]
Hence,
\[ r_1 r_2 + rr_3 = \frac{ab \Delta^2}{s(s - a)(s - b)(s - c)} = ab. \]
Similarly,
\[ r_2 r_3 + rr_1 = bc, \quad r_3 r_1 + rr_2 = ca, \]
so we can write the given equations as
\[ ab = 35, \quad bc = 63, \quad ca = 45. \]
Multiplying all these equations, we get
\[ (ab)(bc)(ca) = 35 \cdot 63 \cdot 45 = 99225, \]
so
\[ a^2 b^2 c^2 = 99225. \]
Then
\[ abc = \sqrt{99225} = 315. \]
Dividing \( abc = 315 \) by \( ab = 35 \), we get
\[ c = \frac{315}{35} = 9. \]
Dividing \( abc = 315 \) by \( bc = 63 \), we get
\[ a = \frac{315}{63} = 5. \]
Dividing \( abc = 315 \) by \( ca = 45 \), we get
\[ b = \frac{315}{45} = 7. \]
Then
\[ 2s = a + b + c = 5 + 7 + 9 = 21, \]
so the answer is \( \boxed{21} \).
Given the vectors:
\[ \mathbf{a} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} \]
\[ \mathbf{b} = 3(\mathbf{i} - \mathbf{j} + \mathbf{k}) = 3\mathbf{i} - 3\mathbf{j} + 3\mathbf{k} \]
where
\[ \mathbf{a} \times \mathbf{c} = \mathbf{b} \]
\[ \mathbf{a} \cdot \mathbf{x} = 3 \]
Find:
\[ \mathbf{a} \cdot (\mathbf{x} \times \mathbf{b} - \mathbf{c}) \]
\( \vec{a}, \vec{b}, \vec{c} \) are three vectors such that \(|\vec{a}| = 3\), \(|\vec{b}| = 2\sqrt{2}\), \(|\vec{c}| = 5\), and \( \vec{c} \) is perpendicular to the plane of \( \vec{a} \) and \( \vec{b} \).
If the angle between the vectors \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{4} \), then
\[ |\vec{a} + \vec{b} + \vec{c}| = \ ? \]
If three numbers are randomly selected from the set \( \{1,2,3,\dots,50\} \), then the probability that they are in arithmetic progression is:
A student has to write the words ABILITY, PROBABILITY, FACILITY, MOBILITY. He wrote one word and erased all the letters in it except two consecutive letters. If 'LI' is left after erasing then the probability that the boy wrote the word PROBABILITY is: \