Let \( X \) be a random variable with the probability mass function
\[P(X = n) = \begin{cases} \dfrac{1}{10}, & n = 1,2,\dots,10, \\ 0, & \text{otherwise}.\end{cases}\]
Then \( E(\max\{X, 5\}) \) equals ............
Let \( X \) be a sample observation from \( U(\theta, \theta^2) \) distribution, where \( \theta \in \Theta = \{2, 3\} \) is the unknown parameter. For testing \[ H_0 : \theta = 2 \,\, \text{against} \,\, H_1 : \theta = 3, \] let \( \alpha \) and \( \beta \) be the size and power, respectively, of the test that rejects \( H_0 \) if and only if \( X \geq 3.5 \). Then \( \alpha + \beta \) equals ...............
A fair die is rolled four times independently. For \( i = 1, 2, 3, 4 \), define \[ Y_i = \begin{cases} 1, & \text{if 6 appears in the \( i \)-th throw}, \\ 0, & \text{otherwise}. \end{cases} \] Then \( P(\max\{Y_1, Y_2, Y_3, Y_4\} = 1) \) equals ............
The solution(s) of the differential equation \( \frac{dy}{dx} = (\sin 2x) y^{1/3}\) satisfying \(y(0) = 0\) is(are)
Let \( f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \) be defined by \( f(x) = x + \dfrac{1}{x^3} \). On which of the following interval(s) is \( f \) one-to-one?
For \( x > -\dfrac{1}{2} \), let \( f_1(x) = \dfrac{2x}{1+2x} \), \( f_2(x) = \log_e(1 + 2x) \) and \( f_3(x) = 2x \). Then which one of the following is TRUE?
Let \( f : \mathbb{R} \to \mathbb{R} \) be a function and let \( J \) be a bounded open interval in \( \mathbb{R} \). Define \[ W(f, J) = \sup \{ f(x) | x \in J \} - \inf \{ f(x) | x \in J \} \] Which one of the following is FALSE?
Let \( I \) denote the \( 4 \times 4 \) identity matrix. If the roots of the characteristic polynomial of a \( 4 \times 4 \) matrix \( M \) are \( \pm \sqrt{\dfrac{1 \pm \sqrt{5}}{2}} \), then \( M^8 \) is
A particular integral of the differential equation \[ y'' + 3y' + 2y = e^{e^x} \] is
An integrating factor of the differential equation \[ \left( y + \frac{1}{3} y^3 + \frac{1}{2} x^2 \right) \, dx + \frac{1}{4} (x + xy^2) \, dy = 0 \] is
Let \( y(x) \) be the solution of the differential equation \( \frac{dy}{dx} + y = f(x) \), for \( x \geq 0, y(0) = 0 \), where \[ f(x) = \begin{cases} 2, & 0 \leq x < 1 \\ 0, & x \geq 1 \end{cases} \] Then \( y(x) \) is
If \( \hat{F}(x, y) = (3x - 8y) \hat{i} + (4y - 6xy) \hat{j} \) for \( (x, y) \in \mathbb{R}^2 \), then \( \oint_C \vec{F} \cdot d \vec{r} \), where \( C \) is the boundary of the triangular region bounded by the lines \( x = 0 \), \( y = 0 \), and \( x + y = 1 \) oriented in the anti-clockwise direction, is
Let \( f(x, y) = \begin{cases} \dfrac{xy}{(x^2 + y^2)^{\alpha}}, & (x, y) \neq (0,0) \\ 0, & (x, y) = (0,0) \end{cases} \) Then which one of the following is TRUE for \( f \) at the point \( (0, 0) \)?