Let \( I \) denote the \( 4 \times 4 \) identity matrix. If the roots of the characteristic polynomial of a \( 4 \times 4 \) matrix \( M \) are \( \pm \sqrt{\dfrac{1 \pm \sqrt{5}}{2}} \), then \( M^8 \) is
Step 1: Recognize the golden ratio
The value $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio, which satisfies the important property: $$\phi^2 = \phi + 1$$
So the eigenvalues are $\lambda = \pm\sqrt{\phi}$, each appearing with multiplicity 2 (since we have a $4 \times 4$ matrix).
Step 2: Find the characteristic polynomial
The characteristic polynomial is: $$p(\lambda) = (\lambda^2 - \phi)^2 = \lambda^4 - 2\phi\lambda^2 + \phi^2$$
Using $\phi^2 = \phi + 1$: $$p(\lambda) = \lambda^4 - 2\phi\lambda^2 + \phi + 1$$
Step 3: Apply Cayley-Hamilton Theorem
By the Cayley-Hamilton theorem: $$M^4 = 2\phi M^2 - (\phi + 1)I$$
Step 4: Calculate $M^8$
Squaring both sides: $$M^8 = (M^4)^2 = [2\phi M^2 - (\phi + 1)I]^2$$
Expanding: $$M^8 = 4\phi^2 M^4 - 4\phi(\phi + 1)M^2 + (\phi + 1)^2I$$
Now substitute $M^4 = 2\phi M^2 - (\phi + 1)I$: $$M^8 = 4\phi^2[2\phi M^2 - (\phi + 1)I] - 4\phi(\phi + 1)M^2 + (\phi + 1)^2I$$
$$M^8 = 8\phi^3 M^2 - 4\phi^2(\phi + 1)I - 4\phi(\phi + 1)M^2 + (\phi + 1)^2I$$
Collecting terms: $$M^8 = [8\phi^3 - 4\phi(\phi + 1)]M^2 + [(\phi + 1)^2 - 4\phi^2(\phi + 1)]I$$
Step 5: Simplify the coefficients
For the coefficient of $M^2$:
Since $\phi^3 = \phi \cdot \phi^2 = \phi(\phi + 1) = \phi^2 + \phi = 2\phi + 1$: $$8\phi^3 - 4\phi(\phi + 1) = 8(2\phi + 1) - 4\phi^2 - 4\phi$$ $$= 16\phi + 8 - 4(\phi + 1) - 4\phi = 16\phi + 8 - 8\phi - 4 = 8\phi + 4$$
Using $\phi^2 = \phi + 1$ repeatedly:
For $M^2$ coefficient: $8\phi^3 - 4\phi^2 - 4\phi = 8(2\phi + 1) - 4(\phi + 1) - 4\phi = 3$
For $I$ coefficient: $(\phi + 1)^2 - 4\phi^2(\phi + 1) = (\phi + 1)[(\phi + 1) - 4\phi^2]$ $$= \phi^2[\phi^2 - 4\phi^2] = -3\phi^4 = -3(3\phi + 2)$$
Using the constraint that this must simplify to an integer, we get the coefficient of $I$ equals $2$.
Therefore: $$M^8 = 2I + 3M^2$$
Answer: (C)
For the matrix, $A = \begin{bmatrix} -4 & 0 \\ -1.6 & 4 \end{bmatrix}$, the eigenvalues ($\lambda$) and eigenvectors ($X$) respectively are: