Step 1: Factor $221$
$$221 = 13 \times 17$$
So $\mathbb{Z}_{221} \cong \mathbb{Z}_{13} \times \mathbb{Z}_{17}$ (since $\gcd(13, 17) = 1$).
Step 2: Understanding homomorphisms from $G$ to $\mathbb{Z}_{221}$
For a homomorphism $f: G \to \mathbb{Z}_{221}$:
Step 3: Condition for trivial homomorphism
For every homomorphism $f: G \to \mathbb{Z}_{221}$ to be trivial, we need:
By the fundamental theorem of homomorphisms, if $f: G \to H$ is a surjective homomorphism, then $H \cong G/\ker(f)$.
Step 4: Check each option
(A) $\mathbb{Z}_{21}$:
$21 = 3 \times 7$
For a homomorphism $f: \mathbb{Z}{21} \to \mathbb{Z}{221}$:
Therefore, $f(1) = 0$, so $f$ is trivial.
(B) $\mathbb{Z}_{51}$:
$51 = 3 \times 17$
For $f: \mathbb{Z}{51} \to \mathbb{Z}{221}$:
We can have $f(1)$ be an element of order $17$ in $\mathbb{Z}_{221}$. For example, $f(1) = 13$ has order $17$.
Check: $51 \cdot 13 = 663 = 3 \times 221 \equiv 0 \pmod{221}$
This gives a non-trivial homomorphism.
(C) $\mathbb{Z}_{91}$:
$91 = 7 \times 13$
For $f: \mathbb{Z}{91} \to \mathbb{Z}{221}$:
We can construct a non-trivial homomorphism with image of order $13$.
(D) $\mathbb{Z}_{119}$:
$119 = 7 \times 17$
For $f: \mathbb{Z}{119} \to \mathbb{Z}{221}$:
We can construct a non-trivial homomorphism with image of order $17$.
Answer: (A)