\( \dfrac{\pi}{\sqrt{3}} \)
\( \dfrac{2\pi}{\sqrt{3}} \)
\( \dfrac{\pi\sqrt{3}}{2} \)
Step 1: Understand the region
The curve $y^2 + z^2 = 1$ is a circle of radius 1 centered at the origin in the $yz$ plane.
For $y \geq 0$, we have the upper semicircle.
The line $y = \frac{1}{2}$ intersects the circle where: $$\left(\frac{1}{2}\right)^2 + z^2 = 1$$ $$z^2 = 1 - \frac{1}{4} = \frac{3}{4}$$ $$z = \pm\frac{\sqrt{3}}{2}$$
So the region $D$ is bounded by:
Step 2: Set up the volume integral
When revolving around the $z$-axis, we use the washer method with $z$ as the variable of integration.
For a given $z \in \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right]$:
The volume is: $$V = \pi \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \left[R(z)^2 - r(z)^2\right] dz$$
$$V = \pi \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \left[(1-z^2) - \frac{1}{4}\right] dz$$
$$V = \pi \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \left[\frac{3}{4} - z^2\right] dz$$
Step 3: Evaluate the integral
$$V = \pi \left[\frac{3z}{4} - \frac{z^3}{3}\right]_{-\sqrt{3}/2}^{\sqrt{3}/2}$$
By symmetry (the integrand is even): $$V = 2\pi \left[\frac{3z}{4} - \frac{z^3}{3}\right]_{0}^{\sqrt{3}/2}$$
$$V = 2\pi \left[\frac{3 \cdot \frac{\sqrt{3}}{2}}{4} - \frac{\left(\frac{\sqrt{3}}{2}\right)^3}{3}\right]$$
$$V = 2\pi \left[\frac{3\sqrt{3}}{8} - \frac{\frac{3\sqrt{3}}{8}}{3}\right]$$
$$V = 2\pi \left[\frac{3\sqrt{3}}{8} - \frac{3\sqrt{3}}{24}\right]$$
$$V = 2\pi \left[\frac{9\sqrt{3}}{24} - \frac{3\sqrt{3}}{24}\right]$$
$$V = 2\pi \left[\frac{6\sqrt{3}}{24}\right]$$
$$V = 2\pi \cdot \frac{\sqrt{3}}{4}$$
$$V = \frac{2\pi\sqrt{3}}{4} = \frac{\pi\sqrt{3}}{2}$$
Answer: (C)