Question:

Consider the region \( D \) in the yz-plane bounded by the line \( y = \frac{1}{2} \) and the curve \( y^2 + z^2 = 1 \), where \( y \geq 0 \). If the region \( D \) is revolved about the \( z \)-axis in \( \mathbb{R}^3 \), then the volume of the resulting solid is

Show Hint

For solids of revolution, use the disk method and ensure you have the correct limits based on the given region and axis of rotation.
Updated On: Dec 15, 2025
  • \( \dfrac{\pi}{\sqrt{3}} \) 
     

  • \( \dfrac{2\pi}{\sqrt{3}} \) 
     

  • \( \dfrac{\pi\sqrt{3}}{2} \) 
     

  • \( \pi\sqrt{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Understand the region

The curve $y^2 + z^2 = 1$ is a circle of radius 1 centered at the origin in the $yz$ plane.

For $y \geq 0$, we have the upper semicircle.

The line $y = \frac{1}{2}$ intersects the circle where: $$\left(\frac{1}{2}\right)^2 + z^2 = 1$$ $$z^2 = 1 - \frac{1}{4} = \frac{3}{4}$$ $$z = \pm\frac{\sqrt{3}}{2}$$

So the region $D$ is bounded by:

  • The line $y = \frac{1}{2}$ (horizontal line)
  • The arc of the circle from $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ to $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

Step 2: Set up the volume integral

When revolving around the $z$-axis, we use the washer method with $z$ as the variable of integration.

For a given $z \in \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right]$:

  • Outer radius: $R(z) = y$ on the circle, so $y = \sqrt{1 - z^2}$
  • Inner radius: $r(z) = \frac{1}{2}$

The volume is: $$V = \pi \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \left[R(z)^2 - r(z)^2\right] dz$$

$$V = \pi \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \left[(1-z^2) - \frac{1}{4}\right] dz$$

$$V = \pi \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \left[\frac{3}{4} - z^2\right] dz$$

Step 3: Evaluate the integral

$$V = \pi \left[\frac{3z}{4} - \frac{z^3}{3}\right]_{-\sqrt{3}/2}^{\sqrt{3}/2}$$

By symmetry (the integrand is even): $$V = 2\pi \left[\frac{3z}{4} - \frac{z^3}{3}\right]_{0}^{\sqrt{3}/2}$$

$$V = 2\pi \left[\frac{3 \cdot \frac{\sqrt{3}}{2}}{4} - \frac{\left(\frac{\sqrt{3}}{2}\right)^3}{3}\right]$$

$$V = 2\pi \left[\frac{3\sqrt{3}}{8} - \frac{\frac{3\sqrt{3}}{8}}{3}\right]$$

$$V = 2\pi \left[\frac{3\sqrt{3}}{8} - \frac{3\sqrt{3}}{24}\right]$$

$$V = 2\pi \left[\frac{9\sqrt{3}}{24} - \frac{3\sqrt{3}}{24}\right]$$

$$V = 2\pi \left[\frac{6\sqrt{3}}{24}\right]$$

$$V = 2\pi \cdot \frac{\sqrt{3}}{4}$$

$$V = \frac{2\pi\sqrt{3}}{4} = \frac{\pi\sqrt{3}}{2}$$

Answer: (C)

Was this answer helpful?
0
0

Questions Asked in IIT JAM MA exam

View More Questions