\[f=(\alpha\ \beta),\qquad g=(\beta\ \gamma),\qquad h=(\gamma\ \delta)\]
We test each option by tracking the images of \(\alpha,\beta,\gamma,\delta\).
\[\begin{aligned} \alpha &\xrightarrow{f} \beta \xrightarrow{g} \gamma \xrightarrow{h} \delta \xrightarrow{g} \delta \xrightarrow{f} \delta, \\ \delta &\xrightarrow{f} \delta \xrightarrow{g} \delta \xrightarrow{h} \gamma \xrightarrow{g} \beta \xrightarrow{f} \alpha, \\ \beta &\xrightarrow{f} \alpha \xrightarrow{g} \alpha \xrightarrow{h} \alpha \xrightarrow{g} \alpha \xrightarrow{f} \beta, \\ \gamma &\xrightarrow{f} \gamma \xrightarrow{g} \beta \xrightarrow{h} \beta \xrightarrow{g} \gamma \xrightarrow{f} \gamma. \end{aligned}\]
Thus (\(\alpha, \delta\)) with \(\beta,\gamma\) fixed.
\[\begin{aligned} \\ \alpha &\xrightarrow{h} \alpha \xrightarrow{g} \alpha \xrightarrow{f} \beta \xrightarrow{g} \gamma \xrightarrow{h} \delta, \\ \delta &\xrightarrow{h} \gamma \xrightarrow{g} \beta \xrightarrow{f} \alpha \xrightarrow{g} \alpha \xrightarrow{h} \alpha, \\ \beta &\xrightarrow{h} \beta \xrightarrow{g} \gamma \xrightarrow{f} \gamma \xrightarrow{g} \beta \xrightarrow{h} \beta, \\ \gamma &\xrightarrow{h} \delta \xrightarrow{g} \delta \xrightarrow{f} \delta \xrightarrow{g} \delta \xrightarrow{h} \gamma. \end{aligned}\]
Thus (\(\alpha, \delta\)) with \(\beta,\gamma\) fixed.
\[\boxed{\text{Correct options are (A) and (D).}}\]
The number of strictly increasing functions \(f\) from the set \(\{1, 2, 3, 4, 5, 6\}\) to the set \(\{1, 2, 3, ...., 9\}\) such that \(f(i)>i\) for \(1 \le i \le 6\), is equal to: