Step 1: Solving the differential equation.
We solve the differential equation \( \frac{dy}{dx} = (\sin 2x) y^{1/3} \) using separation of variables. First, rewrite the equation:
\[
\frac{dy}{y^{1/3}} = (\sin 2x) dx
\]
Integrating both sides, we get:
\[
3y^{2/3} = \int (\sin 2x) dx
\]
The integral of \( \sin 2x \) is \( -\frac{1}{2} \cos 2x \), so:
\[
3y^{2/3} = -\frac{1}{2} \cos 2x + C
\]
Step 2: Applying initial conditions.
Using \( y(0) = 0 \), we find that \( C = \frac{1}{2} \). Thus, the solution is:
\[
y(x) = \left( \frac{\sqrt{8}}{27} \sin^3 x \right)
\]
Step 3: Conclusion.
The correct answer is (C) \( y(x) = \frac{\sqrt{8}{27} \sin^3 x \)}.
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.