An integrating factor of the differential equation
\[ \left( y + \frac{1}{3} y^3 + \frac{1}{2} x^2 \right) \, dx + \frac{1}{4} (x + xy^2) \, dy = 0 \] is
\( 3 \log_e x \)
\( 2 \log_e x \)
Step 1: Check if the equation is exact
For exactness, we need $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
$$\frac{\partial M}{\partial y} = 1 + y^2$$
$$\frac{\partial N}{\partial x} = \frac{1}{4}(1 + y^2)$$
Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, the equation is not exact.
Step 2: Find the integrating factor
Let's check if there's an integrating factor that depends only on $x$, say $\mu(x)$.
For an integrating factor $\mu(x)$: $$\frac{d\mu}{dx} = \mu \cdot \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$$
Calculate: $$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{(1 + y^2) - \frac{1}{4}(1 + y^2)}{\frac{1}{4}x(1 + y^2)}$$
$$= \frac{\frac{3}{4}(1 + y^2)}{\frac{1}{4}x(1 + y^2)} = \frac{3}{x}$$
So: $$\frac{d\mu}{\mu} = \frac{3}{x}dx$$
Integrating: $$\ln|\mu| = 3\ln|x| + C$$
$$\mu = Kx^3$$
Taking $K = 1$, we get $\mu(x) = x^3$
Step 3: Verify that $x^3$ is an integrating factor
Multiply the equation by $x^3$: $$x^3\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right)dx + x^3 \cdot \frac{1}{4}(x + xy^2)dy = 0$$
$$\left(x^3y + \frac{1}{3}x^3y^3 + \frac{1}{2}x^5\right)dx + \frac{1}{4}(x^4 + x^4y^2)dy = 0$$
Now:
Check exactness: $$\frac{\partial M_1}{\partial y} = x^3 + x^3y^2 = x^3(1 + y^2)$$
$$\frac{\partial N_1}{\partial x} = \frac{1}{4} \cdot 4x^3(1 + y^2) = x^3(1 + y^2)$$
Since $\frac{\partial M_1}{\partial y} = \frac{\partial N_1}{\partial x}$, the equation is now exact
Answer: (C)