Let \( f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \) be defined by \( f(x) = x + \dfrac{1}{x^3} \). On which of the following interval(s) is \( f \) one-to-one?
Step 1: Find the derivative
$$f'(x) = 1 - \frac{3}{x^4}$$
Step 2: Determine where $f'(x) = 0$
$$1 - \frac{3}{x^4} = 0$$ $$x^4 = 3$$ $$x = \pm \sqrt[4]{3}$$
Let $\alpha = \sqrt[4]{3} \approx 1.316$
Critical points are at $x = \alpha$ and $x = -\alpha$.
Step 3: Analyze the sign of $f'(x)$
$$f'(x) = 1 - \frac{3}{x^4} = \frac{x^4 - 3}{x^4}$$
Since $x^4 > 0$ for all $x \neq 0$, the sign of $f'(x)$ depends on $(x^4 - 3)$:
Intervals:
Step 4: Check each option
(A) $(-\infty, -1)$:
Since $-1 > -\alpha$ (because $\alpha \approx 1.316$), the interval $(-\infty, -1)$ includes parts where $f$ is increasing (for $x < -\alpha$) and parts where $f$ is decreasing (for $-\alpha < x < -1$).
Therefore, $f$ is not one-one on $(-\infty, -1)$.
(B) $(0, 1)$:
Since $1 < \alpha \approx 1.316$, the entire interval $(0, 1) \subset (0, \alpha)$.
On $(0, \alpha)$, we have $f'(x) < 0$, so $f$ is strictly decreasing.
Therefore, $f$ is one-one on $(0, 1)$.
(C) $(0, 2)$:
Since $\alpha \approx 1.316 \in (0, 2)$, the interval $(0, 2)$ contains the critical point $\alpha$.
On $(0, \alpha)$, $f$ is decreasing, and on $(\alpha, 2)$, $f$ is increasing.
Therefore, $f$ is not one-one on $(0, 2)$.
(D) $(0, \infty)$:
This interval contains the critical point $\alpha$ where $f$ changes from decreasing to increasing.
Therefore, $f$ is not one-one on $(0, \infty)$.
Step 5: Verify option (B) explicitly
For $(0, 1)$: Since $f'(x) < 0$ throughout this interval, $f$ is strictly monotonic (decreasing), which guarantees injectivity.
If $x_1, x_2 \in (0, 1)$ with $x_1 < x_2$, then $f(x_1) > f(x_2)$, so $f(x_1) \neq f(x_2)$.
Answer: (B)