>
questions
List of practice Questions
If $\vec{a} = (x+2y-3)\hat{i} + (2x-y+3)\hat{j}$ and $\vec{b} = (3x-2y)\hat{i} + (x-y+1)\hat{j}$ are two vectors such that $\vec{a} = 2\vec{b}$, then $y-5x=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Vector Algebra
If $\vec{a} = \hat{i} + \sqrt{11}\hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \sqrt{11}\hat{j} - 10\hat{k}$ are two vectors then the component of $\vec{b}$ perpendicular to $\vec{a}$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Vector Algebra
Let $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} + p\hat{k}$ be two vectors. If $(\vec{a}, \vec{b}) = 60^\circ$, then $p =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Vector Algebra
If $\frac{x+3}{(x+1)(x^2+2)} = \frac{a}{x+1} + \frac{bx+c}{x^2+2}$ then $a-b+c =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Integration by Partial Fractions
If $3\sin\theta + 4\cos\theta = 3$ and $\theta \neq (2n+1)\frac{\pi}{2}$, then $\sin 2\theta =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Trigonometry
$\frac{\cos 15^\circ \cos^2 22\frac{1}{2}^\circ - \sin 75^\circ \sin^2 52\frac{1}{2}^\circ}{\cos^2 15^\circ - \cos^2 75^\circ} =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Trigonometry
$16 \sin 12^\circ \cos 18^\circ \sin 48^\circ =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Trigonometry
Number of solutions of the equation $\sin^2\theta + 2\cos^2\theta - \sqrt{3}\sin\theta\cos\theta = 2$ lying in the interval $(-\pi, \pi)$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Trigonometry
If $0 \le x \le \frac{3}{4}$, then the number of values of $x$ satisfying the equation $\text{Tan}^{-1}(2x-1) + \text{Tan}^{-1}2x = \text{Tan}^{-1}4x - \text{Tan}^{-1}(2x+1)$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Trigonometry
If $\text{Sinh}^{-1}x = \text{Cosh}^{-1}y = \log(1+\sqrt{2})$ then $\text{Tan}^{-1}(x+y) =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Hyperbolic Functions
The equation having the multiple root of the equation $x^4 + 4x^3 - 16x - 16 = 0$ as its root is
TS EAMCET - 2025
TS EAMCET
Mathematics
System of Linear Equations
There are 15 stations on a train route and the train has to be stopped at exactly 5 stations among these 15 stations. If it stops at at least two consecutive stations, then the number of ways in which the train can be stopped is
TS EAMCET - 2025
TS EAMCET
Mathematics
permutations and combinations
Number of all possible ways of distributing eight identical apples among three persons is
TS EAMCET - 2025
TS EAMCET
Mathematics
permutations and combinations
Number of all possible words (with or without meaning) that can be formed using all the letters of the word CABINET in which neither the word CAB nor the word NET appear is
TS EAMCET - 2025
TS EAMCET
Mathematics
permutations and combinations
Numerically greatest term in the expansion of $(2x-3y)^n$ when $x=\frac{7}{5}, y=\frac{3}{7}$ and $n=13$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Binomial theorem
If $C_0, C_1, C_2, \dots, C_n$ are the binomial coefficients in the expansion of $(1+x)^n$ then $\sum_{r=1}^{n} \frac{r C_r}{C_{r-1}} =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Binomial theorem
The set of all values of $\theta$ such that $\frac{1-i\cos\theta}{1+2i\sin\theta}$ is purely imaginary is
TS EAMCET - 2025
TS EAMCET
Mathematics
Complex numbers
If $\cos\alpha+\cos\beta+\cos\gamma = 0 = \sin\alpha+\sin\beta+\sin\gamma$, then $\sin 2\alpha + \sin 2\beta + \sin 2\gamma =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Complex numbers
If $\alpha$ is a root of the equation $x^2-x+1=0$ then $(\alpha + \frac{1}{\alpha}) + (\alpha^2 + \frac{1}{\alpha^2}) + (\alpha^3 + \frac{1}{\alpha^3}) + \dots$ to 12 terms =
TS EAMCET - 2025
TS EAMCET
Mathematics
Complex numbers
If the equations $x^2 + px + 2 = 0$ and $x^2 + x + 2p = 0$ have a common root then the sum of the roots of the equation $x^2 + 2px + 8 = 0$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
System of Linear Equations
If both roots of the equation $x^2 - 5ax + 6a = 0$ exceed 1, then the range of 'a' is
TS EAMCET - 2025
TS EAMCET
Mathematics
System of Linear Equations
If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^4 - 4x^3 + 3x^2 + 2x - 2 = 0$ such that $\alpha$ and $\beta$ are integers and $\gamma, \delta$ are irrational numbers, then $\alpha + 2\beta + \gamma^2 + \delta^2 =$
TS EAMCET - 2025
TS EAMCET
Mathematics
System of Linear Equations
If $\frac{1}{2.7} + \frac{1}{7.12} + \frac{1}{12.17} + \dots$ to 10 terms = k, then k =
TS EAMCET - 2025
TS EAMCET
Mathematics
Sequences and Series
If the system of simultaneous linear equations $x+\lambda y-2z=1$, $x-y+\lambda z=2$ and $x-2y+3z=3$ is inconsistent for $\lambda = \lambda_1$ and $\lambda_2$, then $\lambda_1 + \lambda_2 =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Matrices and Determinants
The system of linear equations $(\sin\theta)x+y-2z=0$, $2x-y+(\cos\theta)z = 0$ and $-3x+(\sec\theta)y+3z=0$, where $\theta \neq (2n+1)\frac{\pi}{2}$, has non-trivial solution for
TS EAMCET - 2025
TS EAMCET
Mathematics
Matrices and Determinants
Prev
1
...
162
163
164
165
166
...
7873
Next