In interference, the intensity at a point is given by:
\[
I = I_1 + I_2 + 2 \sqrt{I_1 I_2} \cos(\delta)
\]
Where \( I_1 \) and \( I_2 \) are the intensities of the two coherent sources, and \( \delta \) is the phase difference.
For maximum intensity, \( \cos(\delta) = 1 \), so:
\[
I_{\text{max}} = I_1 + I_2 + 2 \sqrt{I_1 I_2}
\]
For minimum intensity, \( \cos(\delta) = -1 \), so:
\[
I_{\text{min}} = I_1 + I_2 - 2 \sqrt{I_1 I_2}
\]
If the ratio of the intensities is 1:9, then:
\[
I_1 = I, \quad I_2 = 9I
\]
The maximum intensity is:
\[
I_{\text{max}} = I + 9I + 2 \sqrt{I \cdot 9I} = 10I + 6I = 16I
\]
The minimum intensity is:
\[
I_{\text{min}} = I + 9I - 2 \sqrt{I \cdot 9I} = 10I - 6I = 4I
\]
Thus, the ratio of the maximum to the minimum intensities is:
\[
\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{16I}{4I} = 4:1
\]
Therefore, the correct answer is \( 4:1 \).