The magnetic field of an E.M. wave is given by:
\[
\vec{B} = \left( \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \right) 30 \sin \left( \omega \left( t - \frac{z}{c} \right) \right)
\]
The corresponding electric field in S.I. units is:
Show Hint
For an electromagnetic wave, the electric and magnetic fields are perpendicular and related through the speed of light.
We know that the relationship between the magnetic field \( \vec{B} \) and electric field \( \vec{E} \) in an electromagnetic wave is given by:
\[
\vec{E} = \vec{B} \times \hat{c}
\]
and \( \vec{E} = B_0 c \), where \( c \) is the speed of light.
We are given:
\[
\vec{B} = \left( \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \right) 30 \sin \left( \omega \left( t - \frac{z}{c} \right) \right)
\]
We calculate \( \vec{E} \) using the cross product and the fact that \( \vec{E} = B_0 c \).
\[
\vec{E} = \left( \frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j} \right) 30 c \sin \left( \omega \left( t - \frac{z}{c} \right) \right)
\]