Let the intensities of the two monochromatic light beams be \( I_1 \) and \( I_2 \).
Given that the ratio of their intensities is 1:9, we can write \( \frac{I_1}{I_2} = \frac{1}{9} \).
Let \( I_1 = I \) and \( I_2 = 9I \). The maximum intensity \( I_{max} \) in the interference pattern is given by: \[ I_{max} = (\sqrt{I_1} + \sqrt{I_2})^2 \] Substituting the values of \( I_1 \) and \( I_2 \): \[ I_{max} = (\sqrt{I} + \sqrt{9I})^2 = (\sqrt{I} + 3\sqrt{I})^2 = (4\sqrt{I})^2 = 16I \] The minimum intensity \( I_{min} \) in the interference pattern is given by: \[ I_{min} = (\sqrt{I_1} - \sqrt{I_2})^2 \] Substituting the values of \( I_1 \) and \( I_2 \): \[ I_{min} = (\sqrt{I} - \sqrt{9I})^2 = (\sqrt{I} - 3\sqrt{I})^2 = (-2\sqrt{I})^2 = 4I \] The ratio of the maximum to the minimum intensity is: \[ \frac{I_{max}}{I_{min}} = \frac{16I}{4I} = 4 \] So, the ratio of the intensities of maximum to minimum is 4:1.
Consider the sound wave travelling in ideal gases of $\mathrm{He}, \mathrm{CH}_{4}$, and $\mathrm{CO}_{2}$. All the gases have the same ratio $\frac{\mathrm{P}}{\rho}$, where P is the pressure and $\rho$ is the density. The ratio of the speed of sound through the gases $\mathrm{v}_{\mathrm{He}}: \mathrm{v}_{\mathrm{CH}_{4}}: \mathrm{v}_{\mathrm{CO}_{2}}$ is given by
Match List-I with List-II: List-I