The focal length of a lens in a medium is given by the formula:
\[
\frac{1}{f_{\text{medium}}} = \left( \frac{n_{\text{lens}}}{n_{\text{medium}}} \right) \times \frac{1}{f_{\text{air}}}
\]
Where \( n_{\text{lens}} \) is the refractive index of the lens material, \( n_{\text{medium}} \) is the refractive index of the surrounding medium, and \( f_{\text{air}} \) is the focal length of the lens in air.
Given:
- \( f_{\text{air}} = 20 \, \text{cm} \)
- \( n_{\text{lens}} = 1.6 \)
- \( n_{\text{medium}} = 1.8 \)
Substituting these values into the formula:
\[
\frac{1}{f_{\text{medium}}} = \left( \frac{1.6}{1.8} \right) \times \frac{1}{20}
\]
\[
f_{\text{medium}} = \frac{1}{\left( \frac{1.6}{1.8} \right) \times \frac{1}{20}} = -36 \, \text{cm}
\]
Thus, the focal length of the lens when immersed in the liquid is \( -36 \, \text{cm} \).
Therefore, the correct answer is (1) -36 cm.