A bar magnet has total length \( 2l = 20 \) units and the field point \( P \) is at a distance \( d = 10 \) units from the centre of the magnet. If the relative uncertainty of length measurement is 1\%, then the uncertainty of the magnetic field at point P is:
The magnetic field at point \( P \) is proportional to \( \frac{1}{d^3} \). Given the uncertainty in length measurement, the uncertainty in the magnetic field can be calculated using the propagation of errors. Since the relative uncertainty in length is 1%, the relative uncertainty in the magnetic field will be three times that: \[ {Uncertainty in } B = 3\% \times {Uncertainty in Length} \] Thus, the uncertainty in the magnetic field is 5%.
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: