\begin{center}
\includegraphics[width=0.25\linewidth]{q48_digram.png}
\end{center}
The angular separation for the minima in a single-slit diffraction is given by:
\[
\theta_1 = \sin^{-1}\left( \frac{2\lambda}{a} \right), \quad \theta_2 = \sin^{-1}\left( \frac{3\lambda}{a} \right)
\]
where \( \lambda = 628 \, \text{nm} \) is the wavelength and \( a \) is the slit width. Also, we know:
\[
\theta_1 + \theta_2 = 30^\circ
\]
\[
\Rightarrow \sin^{-1}\left( \frac{2\lambda}{a} \right) + \sin^{-1}\left( \frac{3\lambda}{a} \right) = \frac{\pi}{6}
\]
Solving this, we find:
\[
a = 6.07 \, \mu m
\]
Thus, the width of the slit is \( a = 6 \, \mu m \).