
Step 1: Magnetic Field Due to the Arc
For the arc with radius \( a \) and angle \( \frac{3\pi}{2} \), the magnetic field at the origin is: \[ B_1 = \frac{\mu_0 I}{4\pi a} \]
Step 2: Magnetic Field Due to the Straight Segment
For the straight segment of the wire: \[ B_2 = \frac{\mu_0 I}{4\pi a} \left( \frac{3\pi}{2} \right) \]
Step 3: Magnetic Field Due to Other Segments
Since the magnetic field due to the straight segments at the origin is zero: \[ B_3 = 0 \]
Step 4: Calculate the Total Magnetic Field
Thus, the total magnetic field at the origin is: \[ B = \frac{\mu_0 I}{4\pi a} \left( \frac{3\pi}{2} \right) \]
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: