Step 1: Calculate the area of \(E_1\). The area of the ellipse is given by:
\[ A_1 = \pi \times \text{semi-major axis} \times \text{semi-minor axis} = \pi \times \frac{3}{2} \times 2 = 3\pi \]
Step 2: Recursive relationship for areas. Each successive ellipse \(E_{i+1}\) switches the axes, making the area: \[ A_{i+1} = \pi \times \left(\frac{\text{semi-minor axis of } E_i}{2}\right)^2 \times \text{semi-major axis of } E_i \] Since the minor axis becomes the major axis, the area relation forms a geometric series where each term is \(\left(\frac{2}{3}\right)^2\) of the previous term.
Step 3: Sum the infinite series. \[ \sum_{i=1}^{\infty} A_i = A_1 + \left(\frac{4}{9}\right)A_1 + \left(\frac{4}{9}\right)^2A_1 + \ldots = 3\pi \left(\frac{1}{1-\frac{4}{9}}\right) = \frac{27\pi}{5} \]
Step 4: Compute the final result. \[ \frac{5}{\pi} \sum_{i=1}^{\infty} A_i = \frac{5}{\pi} \times \frac{27\pi}{5} = 27 \]
If the area of the region \[ \{(x, y) : 1 - 2x \le y \le 4 - x^2,\ x \ge 0,\ y \ge 0\} \] is \[ \frac{\alpha}{\beta}, \] \(\alpha, \beta \in \mathbb{N}\), \(\gcd(\alpha, \beta) = 1\), then the value of \[ (\alpha + \beta) \] is :
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to