Step 1: Calculate the area of \(E_1\). The area of the ellipse is given by:
\[ A_1 = \pi \times \text{semi-major axis} \times \text{semi-minor axis} = \pi \times \frac{3}{2} \times 2 = 3\pi \]
Step 2: Recursive relationship for areas. Each successive ellipse \(E_{i+1}\) switches the axes, making the area: \[ A_{i+1} = \pi \times \left(\frac{\text{semi-minor axis of } E_i}{2}\right)^2 \times \text{semi-major axis of } E_i \] Since the minor axis becomes the major axis, the area relation forms a geometric series where each term is \(\left(\frac{2}{3}\right)^2\) of the previous term.
Step 3: Sum the infinite series. \[ \sum_{i=1}^{\infty} A_i = A_1 + \left(\frac{4}{9}\right)A_1 + \left(\frac{4}{9}\right)^2A_1 + \ldots = 3\pi \left(\frac{1}{1-\frac{4}{9}}\right) = \frac{27\pi}{5} \]
Step 4: Compute the final result. \[ \frac{5}{\pi} \sum_{i=1}^{\infty} A_i = \frac{5}{\pi} \times \frac{27\pi}{5} = 27 \]
Which of the following circuits has the same output as that of the given circuit?

Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 