The power rating of the electric bulb is \( P = 100 \, \text{W} \) at an rms voltage \( V_{rms} = 220 \, \text{V} \).
When the bulb is connected to an ac source of rms voltage 220 V, it will operate at its rated power.
The relationship between power, rms voltage, and rms current \( I_{rms} \) is: \[ P = V_{rms} I_{rms} \] We can find the rms current through the bulb: \[ I_{rms} = \frac{P}{V_{rms}} = \frac{100 \, \text{W}}{220 \, \text{V}} = \frac{10}{22} \, \text{A} = \frac{5}{11} \, \text{A} \] The peak value of the current \( I_0 \) in an ac circuit is related to the rms current by: \[ I_0 = \sqrt{2} I_{rms} \] Substituting the value of \( I_{rms} \): \[ I_0 = \sqrt{2} \times \frac{5}{11} \, \text{A} \] We know that \( \sqrt{2} \approx 1.414 \). \[ I_0 \approx 1.414 \times \frac{5}{11} = \frac{7.07}{11} \approx 0.6427 \, \text{A} \] Rounding to two decimal places, the peak value of the current through the bulb is approximately 0.64 A.
A circuit with an electrical load having impedance $ Z $ is connected with an AC source as shown in the diagram. The source voltage varies in time as $ V(t) = 300 \sin(400t) \, \text{V} $, where $ t $ is time in seconds.
List-I shows various options for the load. The possible currents $ i(t) $ in the circuit as a function of time are given in List-II.
Choose the option that describes the correct match between the entries in List-I to those in List-II.
An alternating current is represented by the equation, $\mathrm{i}=100 \sqrt{2} \sin (100 \pi \mathrm{t})$ ampere. The RMS value of current and the frequency of the given alternating current are