Question:

If r=1131sinπ4+(r1)π6sinπ4+π6=a3+b,a,bZ,thena2+b2isequalto: \sum_{r=1}^{13} \frac{1}{\sin \frac{\pi}{4} + (r-1) \frac{\pi}{6}} \sin \frac{\pi}{4} + \frac{\pi}{6} = a \sqrt{3} + b, \quad a, b \in \mathbb{Z}, { then } a^2 + b^2 { is equal to:}

Show Hint

In problems involving sums of trigonometric expressions, look for trigonometric identities to simplify the sum and identify patterns.
Updated On: Mar 17, 2025
  • 10
  • 4
  • 8
  • 2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Simplify the given sum expression.

We are given the sum:
r=1131sinπ6sin(π4+(r1)π6)sin(π4+π6) \sum_{r=1}^{13} \frac{1}{\sin \frac{\pi}{6}} \sin \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right)

By using trigonometric identities, this becomes:
1sinπ6r=113sin(π4+(r1)π6) \frac{1}{\sin \frac{\pi}{6}} \sum_{r=1}^{13} \sin \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right)

Further simplification leads to:
r=113cot(π4+(r1)π6)cot(π4+(r1)π6) \sum_{r=1}^{13} \cot \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) - \cot \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right)

Step 2: Identify constants a a and b b

From the result:
232=a3+b 2\sqrt{3} - 2 = a\sqrt{3} + b

Step 3: Compute a2+b2 a^2 + b^2

By comparing terms, we have:
a2+b2=8 a^2 + b^2 = 8

Was this answer helpful?
0
0