Step 1: Simplify the given sum expression.
We are given the sum:
\[ \sum_{r=1}^{13} \frac{1}{\sin \frac{\pi}{6}} \sin \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right) \]
By using trigonometric identities, this becomes:
\[ \frac{1}{\sin \frac{\pi}{6}} \sum_{r=1}^{13} \sin \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) \]
Further simplification leads to:
\[ \sum_{r=1}^{13} \cot \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) - \cot \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) \]
Step 2: Identify constants \( a \) and \( b \)
From the result:
\[ 2\sqrt{3} - 2 = a\sqrt{3} + b \]
Step 3: Compute \( a^2 + b^2 \)
By comparing terms, we have:
\[ a^2 + b^2 = 8 \]
The given graph illustrates:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: