Step 1: Simplify the given sum expression.
We are given the sum:
\[ \sum_{r=1}^{13} \frac{1}{\sin \frac{\pi}{6}} \sin \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right) \]
By using trigonometric identities, this becomes:
\[ \frac{1}{\sin \frac{\pi}{6}} \sum_{r=1}^{13} \sin \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) \]
Further simplification leads to:
\[ \sum_{r=1}^{13} \cot \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) - \cot \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) \]
Step 2: Identify constants \( a \) and \( b \)
From the result:
\[ 2\sqrt{3} - 2 = a\sqrt{3} + b \]
Step 3: Compute \( a^2 + b^2 \)
By comparing terms, we have:
\[ a^2 + b^2 = 8 \]
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: