The particle moves under the influence of an electric field. We will use the work-energy principle to find its speed when it crosses the x-axis.
Step 1: The electric force acting on the particle is given by: \[ F_{\text{electric}} = qE \] where \( E \) is the electric field.
Step 2: The work done by this force in moving the particle a distance \( l \) along the x-axis is: \[ W = F_{\text{electric}} \times l = qEl \] Step 3: The kinetic energy gained by the particle is equal to the work done: \[ K = \frac{1}{2} m v^2 \] So, equating the work and kinetic energy: \[ qEl = \frac{1}{2} m v^2 \] Step 4: Solve for \( v \): \[ v = \sqrt{\frac{2qEI}{m}} \] Final Conclusion: The speed of the particle when it crosses the x-axis is \( \sqrt{\frac{2qEI}{m}} \), which is Option (2).
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: