The particle moves under the influence of an electric field. We will use the work-energy principle to find its speed when it crosses the x-axis.
Step 1: The electric force acting on the particle is given by: \[ F_{\text{electric}} = qE \] where \( E \) is the electric field.
Step 2: The work done by this force in moving the particle a distance \( l \) along the x-axis is: \[ W = F_{\text{electric}} \times l = qEl \] Step 3: The kinetic energy gained by the particle is equal to the work done: \[ K = \frac{1}{2} m v^2 \] So, equating the work and kinetic energy: \[ qEl = \frac{1}{2} m v^2 \] Step 4: Solve for \( v \): \[ v = \sqrt{\frac{2qEI}{m}} \] Final Conclusion: The speed of the particle when it crosses the x-axis is \( \sqrt{\frac{2qEI}{m}} \), which is Option (2).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): An electron in a certain region of uniform magnetic field is moving with constant velocity in a straight line path.
Reason (R): The magnetic field in that region is along the direction of velocity of the electron.
In the light of the above statements, choose the correct answer from the options given below: