The particle moves under the influence of an electric field. We will use the work-energy principle to find its speed when it crosses the x-axis.
Step 1: The electric force acting on the particle is given by: \[ F_{\text{electric}} = qE \] where \( E \) is the electric field.
Step 2: The work done by this force in moving the particle a distance \( l \) along the x-axis is: \[ W = F_{\text{electric}} \times l = qEl \] Step 3: The kinetic energy gained by the particle is equal to the work done: \[ K = \frac{1}{2} m v^2 \] So, equating the work and kinetic energy: \[ qEl = \frac{1}{2} m v^2 \] Step 4: Solve for \( v \): \[ v = \sqrt{\frac{2qEI}{m}} \] Final Conclusion: The speed of the particle when it crosses the x-axis is \( \sqrt{\frac{2qEI}{m}} \), which is Option (2).
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: