The surface energy of a single drop is given by \( 4 \pi r^2 T \), where \( r \) is the radius and \( T \) is the surface tension. - Initially, there are two drops, so the total surface energy is \( 2 \times 4 \pi r^2 T = 8 \pi r^2 T \). - After the two drops coalesce, the radius of the new drop becomes \( \sqrt{2}r \), so the surface energy of the new drop is \( 4 \pi (\sqrt{2}r)^2 T = 8 \pi r^2 T \). The surface energy released is the difference between the initial and final surface energy, which is \( 8 \pi r^2 T \). Thus, the correct answer is \( 8 \pi r^2 T \).
Two soap bubbles of radius 2 cm and 4 cm, respectively, are in contact with each other. The radius of curvature of the common surface, in cm, is _______________.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 