The surface energy of a single drop is given by \( 4 \pi r^2 T \), where \( r \) is the radius and \( T \) is the surface tension. - Initially, there are two drops, so the total surface energy is \( 2 \times 4 \pi r^2 T = 8 \pi r^2 T \). - After the two drops coalesce, the radius of the new drop becomes \( \sqrt{2}r \), so the surface energy of the new drop is \( 4 \pi (\sqrt{2}r)^2 T = 8 \pi r^2 T \). The surface energy released is the difference between the initial and final surface energy, which is \( 8 \pi r^2 T \). Thus, the correct answer is \( 8 \pi r^2 T \).
Two soap bubbles of radius 2 cm and 4 cm, respectively, are in contact with each other. The radius of curvature of the common surface, in cm, is _______________.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.