If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Given \( y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix} \)
Applying \( C_3 \rightarrow C_3 - C_1 \), we get \( y(x) = \begin{vmatrix} \sin x & \cos x & \cos x + 1 27 & 28 & 0 \\ 1 & 1 & 0 \end{vmatrix} \)
Expanding the determinant, we have \( y(x) = -(\cos x + 1) \begin{vmatrix} 27 & 28 1 & 1 \end{vmatrix} \) \( y(x) = -(\cos x + 1) (27 - 28) \) \( y(x) = \cos x + 1 \)
Differentiating with respect to x, we get \( \frac{dy}{dx} = -\sin x \)
Differentiating again with respect to x, we get \( \frac{d^2y}{dx^2} = -\cos x \)
Therefore, \( \frac{d^2y}{dx^2} + y = -\cos x + \cos x + 1 = 1 \)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .