If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Given \( y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix} \)
Applying \( C_3 \rightarrow C_3 - C_1 \), we get \( y(x) = \begin{vmatrix} \sin x & \cos x & \cos x + 1 27 & 28 & 0 \\ 1 & 1 & 0 \end{vmatrix} \)
Expanding the determinant, we have \( y(x) = -(\cos x + 1) \begin{vmatrix} 27 & 28 1 & 1 \end{vmatrix} \) \( y(x) = -(\cos x + 1) (27 - 28) \) \( y(x) = \cos x + 1 \)
Differentiating with respect to x, we get \( \frac{dy}{dx} = -\sin x \)
Differentiating again with respect to x, we get \( \frac{d^2y}{dx^2} = -\cos x \)
Therefore, \( \frac{d^2y}{dx^2} + y = -\cos x + \cos x + 1 = 1 \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: