If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Given \( y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix} \)
Applying \( C_3 \rightarrow C_3 - C_1 \), we get \( y(x) = \begin{vmatrix} \sin x & \cos x & \cos x + 1 27 & 28 & 0 \\ 1 & 1 & 0 \end{vmatrix} \)
Expanding the determinant, we have \( y(x) = -(\cos x + 1) \begin{vmatrix} 27 & 28 1 & 1 \end{vmatrix} \) \( y(x) = -(\cos x + 1) (27 - 28) \) \( y(x) = \cos x + 1 \)
Differentiating with respect to x, we get \( \frac{dy}{dx} = -\sin x \)
Differentiating again with respect to x, we get \( \frac{d^2y}{dx^2} = -\cos x \)
Therefore, \( \frac{d^2y}{dx^2} + y = -\cos x + \cos x + 1 = 1 \)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).