If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
To solve the problem, we start with the given determinant:
| \( y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix} \) |
We need to first evaluate this determinant. The determinant of a \(3 \times 3\) matrix is calculated using:
\(D = a(ei − fh) − b(di − fg) + c(dh − eg)\)
For our matrix:
Substituting these into the formula, we calculate the determinant:
\(y(x) = \sin x (28 \times 1 - 27 \times 1) - \cos x (27 \times 1 - 1 \times 27) + (\sin x + \cos x + 1) (27 \times 1 - 28 \times 1)\)
which simplifies to:
\(= \sin x (28 - 27) - \cos x (27 - 27) + (\sin x + \cos x + 1) (27 - 28)\)
This simplifies to:
\(= \sin x (1) - 0 + (\sin x + \cos x + 1) (-1)\)
Further simplifying:
\(= \sin x - (\sin x + \cos x + 1)\)
Finally:
\(y(x) = -\cos x - 1\)
So, we have:
\(y(x) = -\cos x - 1\)
Next, we need to calculate \(\frac{d^2y}{dx^2}\):
First derivative:
\(\frac{dy}{dx} = \frac{d}{dx}(-\cos x - 1) = \sin x\)
Second derivative:
\(\frac{d^2y}{dx^2} = \frac{d}{dx}(\sin x) = \cos x\)
Now, we calculate:
\(\frac{d^2y}{dx^2} + y = \cos x + (-\cos x - 1)\)
Which simplifies to:
\(= -1\)
This confirms that the answer is:
-1
Given the determinant function:
| \(\begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix}\) |
We need to find the expression \(\frac{d^2y}{dx^2} + y\).
Using the determinant definition, we compute:
\(y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix}\)
Expanding along the first row:
\(y(x) = \sin x \cdot \begin{vmatrix} 28 & 27 \\ 1 & 1 \end{vmatrix} - \cos x \cdot \begin{vmatrix} 27 & 27 \\ 1 & 1 \end{vmatrix} + (\sin x + \cos x + 1) \cdot \begin{vmatrix} 27 & 28 \\ 1 & 1 \end{vmatrix}\)
\(\begin{vmatrix} 28 & 27 \\ 1 & 1 \end{vmatrix} = (28)(1) - (27)(1) = 28 - 27 = 1\)
\(\begin{vmatrix} 27 & 27 \\ 1 & 1 \end{vmatrix} = (27)(1) - (27)(1) = 0\)
\(\begin{vmatrix} 27 & 28 \\ 1 & 1 \end{vmatrix} = (27)(1) - (28)(1) = 27 - 28 = -1\)
\(y(x) = \sin x \cdot 1 - \cos x \cdot 0 + (\sin x + \cos x + 1) \cdot (-1)\)
\(= \sin x - (\sin x + \cos x + 1)\)
\(= \sin x - \sin x - \cos x - 1\)
\(= - \cos x - 1\)
\(\frac{dy}{dx} = \frac{d}{dx} (-\cos x - 1) = \sin x\)
\(\frac{d^2y}{dx^2} = \frac{d}{dx} (\sin x) = \cos x\)
\(\frac{d^2y}{dx^2} + y(x) = \cos x + (-\cos x - 1)\)
\(= \cos x - \cos x - 1\)
\(= -1\)
The value of \(\frac{d^2y}{dx^2} + y\) is therefore:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: