To find the electrostatic potential energy of the charge configuration, we can use the formula for the potential energy \( U \) between two point charges:
\(U = \frac{k \cdot q_1 \cdot q_2}{r}\)
where:
Given:
Now, calculate the electrostatic constant \( k \):
\(k = \frac{1}{4\pi\epsilon_0} = \frac{1}{4\pi \times 8.85 \times 10^{-12}} \approx 8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2}\)
Substitute all the values into the formula for \( U \):
\(U = \frac{8.99 \times 10^9 \times 7 \times 10^{-6} \times (-4) \times 10^{-6}}{0.14}\)
Calculate:
\(U = \frac{-8.99 \times 10^9 \times 28 \times 10^{-12}}{0.14}\)
\(U = \frac{-251.72 \times 10^{-3}}{0.14}\)
\(U = -1.8 \, \text{J}\)
Thus, the electrostatic potential energy of the charge configuration is \(-1.8 \, \text{J}\). Hence, the correct option is:
Answer: \( -1.8 \, \text{J} \)
Two short dipoles \( (A, B) \), \( A \) having charges \( \pm 2\,\mu\text{C} \) and length \( 1\,\text{cm} \) and \( B \) having charges \( \pm 4\,\mu\text{C} \) and length \( 1\,\text{cm} \) are placed with their centres \( 80\,\text{cm} \) apart as shown in the figure. The electric field at a point \( P \), equidistant from the centres of both dipoles is \underline{\hspace{2cm}} N/C.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
