We check for values of \(x\) where both \(\left\lfloor \dfrac{x^2}{2} \right\rfloor\) and \(\lfloor \sqrt{x} \rfloor\) become integers. \[ \{ 0, 1, \sqrt{2}, 2, \sqrt{6}, \sqrt{8}, \sqrt{10}, \sqrt{12}, \sqrt{14}, 4 \} \] The function is **continuous at** \(0^+\) and **continuous at** \(4^-\). Now, discontinuity occurs when: \[ \left\lfloor \dfrac{x^2}{2} \right\rfloor = \lfloor \sqrt{x} \rfloor \] which happens at \(x = \sqrt{2}\). \[ \Rightarrow \text{Not continuous} \] Therefore, the function is **discontinuous at 8 points**. \[ \boxed{\text{Function is discontinuous at 8 points.}} \]
\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: