Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
We have:
A: |z − (2+i)| = 3 ⇒ (x−2)^2 + (y−1)^2 = 9 (circle)
B: Re(z − iz) = 2 ⇒ Re((1−i)(x+iy)) = x + y = 2 (line)
Step 1: Intersect the circle with the line x + y = 2. Put y = 2 − x into the circle:
\[ (x-2)^2 + (1 - x)^2 = 9 \;\Longrightarrow\; 2x^2 - 6x + 5 = 9 \] \[ \Longrightarrow\; 2x^2 - 6x - 4 = 0 \;\Longrightarrow\; x^2 - 3x - 2 = 0. \]
Thus roots \(x_1, x_2\) satisfy \(x_1 + x_2 = 3,\; x_1 x_2 = -2\), and \(y_i = 2 - x_i\).
Step 2: For each point \(z_i = x_i + i y_i\),
\[ |z_i|^2 = x_i^2 + y_i^2 = (x_i + y_i)^2 - 2x_i y_i = 4 - 2x_i y_i \] (since \(x_i + y_i = 2\)).
Step 3: Sum over the two intersection points:
\[ \sum |z_i|^2 = \sum (4 - 2x_i y_i) = 8 - 2\sum x_i y_i. \] \[ x_i y_i = x_i (2 - x_i) = 2x_i - x_i^2 \Rightarrow \sum x_i y_i = 2(x_1+x_2) - (x_1^2 + x_2^2). \] \[ x_1^2 + x_2^2 = (x_1+x_2)^2 - 2x_1x_2 = 3^2 - 2(-2) = 9 + 4 = 13. \] \[ \sum x_i y_i = 2\cdot 3 - 13 = -7. \] \[ \therefore\ \sum |z|^2 = 8 - 2(-7) = 8 + 14 = \boxed{22}. \]
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below: