Step 1: Condition for infinitely many solutions.
For the system of equations to have infinitely many solutions, the determinant of the coefficient matrix must be zero. The coefficient matrix of the given system is: \[ \begin{pmatrix} 2 & 3 & 5 7 & 3 & -2 12 & 3 & -(4 + \lambda) \end{pmatrix}. \] The determinant of this matrix is: \[ \text{det} = 2 \left( \begin{vmatrix} 3 & -2 3 & -(4 + \lambda) \end{vmatrix} \right) - 3 \left( \begin{vmatrix} 7 & -2 \\ 12 & -(4 + \lambda) \end{vmatrix} \right) + 5 \left( \begin{vmatrix} 7 & 3 \\ 12 & 3 \end{vmatrix} \right). \] For infinitely many solutions, the determinant must be zero. Solving this determinant will provide values for \( \lambda \) and \( \mu \).
Step 2: Solve for \( \lambda \) and \( \mu \).
We calculate the determinant as shown in the image: \[ \text{det} = 12(21) - 3(39) - (\lambda + 4)(-15) = 0, \] \[ \Rightarrow -252 + 117 + 15(1 + 4) = 0, \] \[ \Rightarrow 15\lambda + 177 - 252 = 0, \] \[ \Rightarrow 15\lambda - 75 = 0 \Rightarrow \lambda = 5. \] Now for \( \mu \), we solve: \[ \begin{pmatrix} 9 & 3 & 5 8 & 3 & -2 16 & 3 & -(4 + \mu) \end{pmatrix}. \] By solving for \( \mu \), we get \( \mu = 9 \).
Step 3: Find the radius of the circle.
The center of the circle is \( (\lambda, \mu) = (5, 9) \). The radius is the perpendicular distance from this center to the line \( 4x = 3y \).
The formula for the distance from a point \( (x_1, y_1) \) to a line \( ax + by + c = 0 \) is given by: \[ \text{Distance} = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}. \] Substitute the values \( a = 4, b = -3, c = 0, x_1 = 5, y_1 = 9 \), and calculate the distance: \[ \text{Distance} = \frac{|4(5) - 3(9) + 0|}{\sqrt{4^2 + (-3)^2}} = \frac{|20 - 27|}{5} = \frac{7}{5}. \]
Thus, the radius of the circle is \( \frac{7}{5} \).
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to: