Step 1: Condition for infinitely many solutions.
For the system of equations to have infinitely many solutions, the determinant of the coefficient matrix must be zero. The coefficient matrix of the given system is: \[ \begin{pmatrix} 2 & 3 & 5 7 & 3 & -2 12 & 3 & -(4 + \lambda) \end{pmatrix}. \] The determinant of this matrix is: \[ \text{det} = 2 \left( \begin{vmatrix} 3 & -2 3 & -(4 + \lambda) \end{vmatrix} \right) - 3 \left( \begin{vmatrix} 7 & -2 \\ 12 & -(4 + \lambda) \end{vmatrix} \right) + 5 \left( \begin{vmatrix} 7 & 3 \\ 12 & 3 \end{vmatrix} \right). \] For infinitely many solutions, the determinant must be zero. Solving this determinant will provide values for \( \lambda \) and \( \mu \).
Step 2: Solve for \( \lambda \) and \( \mu \).
We calculate the determinant as shown in the image: \[ \text{det} = 12(21) - 3(39) - (\lambda + 4)(-15) = 0, \] \[ \Rightarrow -252 + 117 + 15(1 + 4) = 0, \] \[ \Rightarrow 15\lambda + 177 - 252 = 0, \] \[ \Rightarrow 15\lambda - 75 = 0 \Rightarrow \lambda = 5. \] Now for \( \mu \), we solve: \[ \begin{pmatrix} 9 & 3 & 5 8 & 3 & -2 16 & 3 & -(4 + \mu) \end{pmatrix}. \] By solving for \( \mu \), we get \( \mu = 9 \).
Step 3: Find the radius of the circle.
The center of the circle is \( (\lambda, \mu) = (5, 9) \). The radius is the perpendicular distance from this center to the line \( 4x = 3y \).
The formula for the distance from a point \( (x_1, y_1) \) to a line \( ax + by + c = 0 \) is given by: \[ \text{Distance} = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}. \] Substitute the values \( a = 4, b = -3, c = 0, x_1 = 5, y_1 = 9 \), and calculate the distance: \[ \text{Distance} = \frac{|4(5) - 3(9) + 0|}{\sqrt{4^2 + (-3)^2}} = \frac{|20 - 27|}{5} = \frac{7}{5}. \]
Thus, the radius of the circle is \( \frac{7}{5} \).
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .