The height from Earth's surface at which acceleration due to gravity becomes \(\frac{g}{4}\) is \(\_\_\)? (Where \(g\) is the acceleration due to gravity on the surface of the Earth and \(R\) is the radius of the Earth.)
For a uniform rectangular sheet shown in the figure, the ratio of moments of inertia about the axes perpendicular to the sheet and passing through \( O \) (the center of mass) and \( O' \) (corner point) is:
An electric field is given by \( \vec{E} = (6\hat{i} + 5\hat{j} + 3\hat{k}) \, \text{N/C} \). The electric flux through a surface area \( 30\hat{i} \, \text{m}^2 \) lying in the YZ-plane (in SI units) is: