The mathematical expression for the wavelength in the Paschen series is:
\[
\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right),
\]
where:
\( n_1 = 3 \), representing the Paschen series,
\( n_2 = 4 \), indicating the next energy level above \( n_1 \) for the longest wavelength.
By substituting the values:
\[
\frac{1}{\lambda} = R_H \left( \frac{1}{3^2} - \frac{1}{4^2} \right).
\]
Simplification yields:
\[
\frac{1}{\lambda} = R_H \left( \frac{1}{9} - \frac{1}{16} \right).
\]
\[
\frac{1}{\lambda} = R_H \cdot \frac{16 - 9}{144}.
\]
\[
\frac{1}{\lambda} = R_H \cdot \frac{7}{144}.
\]
By substituting value of \( R_H = 1.097 \times 10^7 \):
\[
\frac{1}{\lambda} = 1.097 \times 10^7 \cdot \frac{7}{144}.
\]
\[
\frac{1}{\lambda} = \frac{7.679 \times 10^7}{144}.
\]
\[
\lambda = \frac{144}{7.679 \times 10^7} \approx 1.876 \times 10^{-6} \, \text{m}.
\]
Final Answer:
\[
\boxed{1.876 \times 10^{-6} \, \text{m}}
\]