When the drops coalesce, their total volume remains unchanged. Let: - \( r \) be the radius of each small drop, - \( R \) be the radius of the combined drop.
Step 1: Apply Volume Conservation The total volume of eight small drops is: \[ 8 \cdot \frac{4}{3} \pi r^3 = \frac{4}{3} \pi R^3. \] Simplify: \[ R^3 = 8r^3 \quad \implies \quad R = 2r. \]
Step 2: Terminal Velocity Relation The terminal velocity \( v_T \) of a drop is proportional to the square of its radius: \[ v_T \propto r^2. \] Let \( v_1 = 10 \, \text{cm/s} \) be the terminal velocity of the small drops, and \( v_2 \) be the terminal velocity of the combined drop. Then: \[ \frac{v_1}{v_2} = \left( \frac{r}{R} \right)^2. \] Substitute \( R = 2r \): \[ \frac{v_1}{v_2} = \left( \frac{r}{2r} \right)^2 = \frac{1}{4}. \]
Step 3: Calculate \( v_2 \) Rearrange to find \( v_2 \): \[ v_2 = 4v_1 = 4 \cdot 10 = 40 \, \text{cm/s}. \]
Final Answer: \[ \boxed{40 \, \text{cm/s}} \]
A solid sphere of radius \(4a\) units is placed with its centre at origin. Two charges \(-2q\) at \((-5a, 0)\) and \(5q\) at \((3a, 0)\) is placed. If the flux through the sphere is \(\frac{xq}{\in_0}\) , find \(x\)