The radiant energy \( E \) emitted by a star is given by:
\[
E = \sigma \epsilon A T^4.
\]
For spherical stars:
\[
A \propto R^2,
\]
where \( R \) is the radius. Hence:
\[
E \propto R^2 T^4.
\]
Step 1: Write the energy ratio.
For two stars, the ratio of radiant energies is:
\[
\frac{E_1}{E_2} = \frac{R_1^2 T_1^4}{R_2^2 T_2^4}.
\]
Given:
\[
E_1 = 10000 \times E_2.
\]
Substitute:
\[
\frac{10000 \cdot E_2}{E_2} = \frac{R_1^2 \cdot T_1^4}{R_2^2 \cdot T_2^4}.
\]
Simplify:
\[
10000 = \frac{R_1^2 (2000)^4}{R_2^2 (6000)^4}.
\]
Step 2: Simplify the temperature ratio.
The ratio of temperatures is:
\[
\frac{T_1}{T_2} = \frac{2000}{6000} = \frac{1}{3}.
\]
Raise to the power of 4:
\[
\left( \frac{1}{3} \right)^4 = \frac{1}{81}.
\]
Substitute back:
\[
10000 = \frac{R_1^2}{R_2^2} \cdot \frac{1}{81}.
\]
Multiply through by 81:
\[
\frac{R_1^2}{R_2^2} = 10000 \cdot 81 = 900^2.
\]
Step 3: Take the square root.
\[
\frac{R_1}{R_2} = \sqrt{900} = 900:1.
\]
Thus, the ratio of their radii is:
\[
R_1 : R_2 = 900:1.
\]