According to Brewster’s law, the reflected ray is completely polarized when the angle of incidence \( \theta_p \) satisfies:
\[ \tan \theta_p = n, \]where \( n \) is the refractive index of the medium relative to air.
Given \( \theta_p = 60^\circ \), we have:
\[ n = \tan 60^\circ = \sqrt{3}. \]Using Snell’s law \( n_1 \sin \theta_1 = n_2 \sin \theta_2 \), with \( n_1 = 1 \) (for air) and \( \theta_1 = 60^\circ \):
\[ \sin \theta_2 = \frac{\sin 60^\circ}{\sqrt{3}} = \frac{\sqrt{3}/2}{\sqrt{3}} = \frac{1}{2}. \]Therefore, \( \theta_2 = 30^\circ \).
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .