According to Brewster’s law, the reflected ray is completely polarized when the angle of incidence \( \theta_p \) satisfies:
\[ \tan \theta_p = n, \]where \( n \) is the refractive index of the medium relative to air.
Given \( \theta_p = 60^\circ \), we have:
\[ n = \tan 60^\circ = \sqrt{3}. \]Using Snell’s law \( n_1 \sin \theta_1 = n_2 \sin \theta_2 \), with \( n_1 = 1 \) (for air) and \( \theta_1 = 60^\circ \):
\[ \sin \theta_2 = \frac{\sin 60^\circ}{\sqrt{3}} = \frac{\sqrt{3}/2}{\sqrt{3}} = \frac{1}{2}. \]Therefore, \( \theta_2 = 30^\circ \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: