Step 1: Potential Energy and Kinetic Energy in SHM.
The total energy in SHM is:
\[
E_{\text{total}} = K.E. + P.E.
\]
Let the amplitude of the particle be \( A \), and the position at any instant is \( x \). The potential energy is:
\[
P.E. = \frac{1}{2} k x^2,
\]
where \( k \) is the spring constant. The kinetic energy is:
\[
K.E. = \frac{1}{2} k (A^2 - x^2).
\]
Step 2: At \( x = \frac{A}{n} \).
Substitute \( x = \frac{A}{n} \):
\[
P.E. = \frac{1}{2} k \left( \frac{A}{n} \right)^2 = \frac{1}{2} k \frac{A^2}{n^2}.
\]
\[
K.E. = \frac{1}{2} k \left( A^2 - \left( \frac{A}{n} \right)^2 \right) = \frac{1}{2} k \left( A^2 - \frac{A^2}{n^2} \right).
\]
Simplify:
\[
K.E. = \frac{1}{2} k A^2 \left( 1 - \frac{1}{n^2} \right) = \frac{1}{2} k A^2 \frac{n^2 - 1}{n^2}.
\]
Step 3: Ratio of \( K.E. \) to \( P.E. \).
The ratio is:
\[
\frac{K.E.}{P.E.} = \frac{\frac{1}{2} k A^2 \frac{n^2 - 1}{n^2}}{\frac{1}{2} k \frac{A^2}{n^2}}.
\]
Simplify:
\[
\frac{K.E.}{P.E.} = \frac{n^2 - 1}{1}.
\]
Thus:
\[
\frac{K.E.}{P.E.} = n^2 - 1.
\]
Step 4: Final Answer.
The ratio of \( K.E. \) to \( P.E. \) is:
\[
\boxed{n^2 - 1}.
\]