Let $\alpha$ be a positive real number. Let $f: R \rightarrow R$ and $g:(\alpha, \infty) \rightarrow R$ be the functions defined by$f(x)=\sin \left(\frac{\pi x}{12}\right) \text { and } g(x)=\frac{2 \log _e(\sqrt{ x }-\sqrt{\alpha})}{\log _e\left( e ^{\sqrt{x}}- e ^{\sqrt{\alpha}}\right)} $ Then the value of $\displaystyle\lim _{x \rightarrow \alpha^{+}} f( g ( x ))$ is _______.
The value of \(P(1 < X < 4 | x ≤ 2)\) is equal to
Let x = x(y) be the solution of the differential equation \(2ye^{\frac{x}{y^2}}dx+(y^2−4xe^{\frac{x}{y^2}})dy=0 \)such that x(1) = 0. Then, x(e) is equal to
Let f : R → R be a function defined by:\(ƒ(x) = (x-3)^{n_1} (x-5)^{n_2} , n_1, n_2 ∈ N\)Then, which of the following is NOT true?
If\(\int_{0}^{2} (\sqrt{2x} - \sqrt{2x - x^2}) \,dx = \int_{0}^{1} \left(1 - \sqrt{1 - y^2} - \frac{y^2}{2}\right) \,dy + \int_{1}^{2} (2 - \frac{y^2}{2}) \,dy + I\)then I equal is