Let f : R → R be a function defined by:
\(ƒ(x) = (x-3)^{n_1} (x-5)^{n_2} , n_1, n_2 ∈ N\)
Then, which of the following is NOT true?
The correct answer is (C) : For n1 = 3, n2 = 5, there exists α ∈ (3, 5) where f attains local maxima.
For n2 ∈ odd, there will be local minima in (3, 5)
for n2 ∈ even, there will be local maxima in (3, 5)
Define \( f(x) = \begin{cases} x^2 + bx + c, & x< 1 \\ x, & x \geq 1 \end{cases} \). If f(x) is differentiable at x=1, then b−c is equal to
Consider the following cell: $ \text{Pt}(s) \, \text{H}_2 (1 \, \text{atm}) | \text{H}^+ (1 \, \text{M}) | \text{Cr}_2\text{O}_7^{2-}, \, \text{Cr}^{3+} | \text{H}^+ (1 \, \text{M}) | \text{Pt}(s) $
Given: $ E^\circ_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33 \, \text{V}, \quad \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
At equilibrium: $ \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
Objective: $ \text{Determine the pH at the cathode where } E_{\text{cell}} = 0. $
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: