Let $\alpha$ be a positive real number. Let $f: R \rightarrow R$ and $g:(\alpha, \infty) \rightarrow R$ be the functions defined by
$f(x)=\sin \left(\frac{\pi x}{12}\right) \text { and } g(x)=\frac{2 \log _e(\sqrt{ x }-\sqrt{\alpha})}{\log _e\left( e ^{\sqrt{x}}- e ^{\sqrt{\alpha}}\right)} $
Then the value of $\displaystyle\lim _{x \rightarrow \alpha^{+}} f( g ( x ))$ is _______.
\(\lim\limits_{x→α^+}f(g(x))=f(\lim\limits_{x→α^+}g(x))\)
Now, \(\lim\limits_{x→α^+}g(x)=\lim\limits_{x→α^+}\frac{2ln(\sqrt{x}-\sqrt{\alpha})}{ln(e^{\sqrt{x}}-e^{\sqrt{α}})}\)
Now, By applying D'L Hospital
\(\lim\limits_{x→α^+}+\frac{2.\frac{1}{\sqrt{x-\sqrt{\alpha}}}.\frac{1}{2\sqrt{x}}}{\frac{1}{e^{\sqrt{x}}=e^{\sqrt{\alpha}}}.e^{\sqrt{x}}.\frac{1}{2\sqrt{x}}}\)
\(\lim\limits_{x→α^+}\frac{2(e^{\sqrt{x}}-e^{\sqrt{\alpha}})}{e^{\sqrt{x}}(\sqrt{x}-\sqrt{\alpha})}\)
\(\lim\limits_{x→α^+}\frac{2e^{\sqrt{\alpha}}(e^{\sqrt{x}-\sqrt{\alpha}}-1)}{e^{\sqrt{x}}(\sqrt{x}-\sqrt{\alpha})}=2\)
Now, f(x) = \(\sin\frac{\pi x}{12}\) given
Hence f(2) = \(\sin\frac{\pi(2)}{12}\)
\(=\sin\frac{\pi}{6}\)
\(=\frac{1}{2}=0.5\)
So, the correct answer is 0.5
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.
A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.
Read More: Limits and Derivatives