Given :
\(\sin(\alpha+\beta)=\frac{1}{3}\) and \(\cos(\alpha-\beta)=\frac{2}{3}\)
\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\)
\(=(\frac{\cos(\alpha-\beta)}{\sin\beta\cos\beta}+\frac{\cos(\alpha-\beta)}{\sin\alpha.\cos\alpha})^2\)
\(=\left(\frac{4}{3} \left\{\frac{1}{\sin2\beta}+\frac{1}{\sin2\alpha}\right\}\right)^2\)
\(=\frac{16}{9}\left(\frac{2\sin(\alpha+\beta).\cos(\alpha-\beta)}{\sin2\alpha.\sin2\beta}\right)^2\)
\(=\frac{16}{9}(\frac{4.\frac{1}{2}.\frac{2}{3}}{\cos(2\alpha-2\beta)-\cos(2\alpha+2\beta)})^2\)
\(=\frac{16}{9}\left(\frac{\frac{8}{9}}{2\cos^2(\alpha-\beta)-1-1+2\sin^2(\alpha+\beta)}\right)^2\)
\(=\frac{16}{9}(\frac{\frac{8}{9}}{\frac{8}{9}+2+\frac{2}{9}})\)
\(=\frac{16}{9}\)
\(=1\)
Therefore, the correct answer is 1.
Let \(\alpha\ and\ \beta\) be real numbers such that \(-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}\). If \(\sin (\alpha+\beta)=\frac{1}{3}\ and\ \cos (\alpha-\beta)=\frac{2}{3}\), then the greatest integer less than or equal to
\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\) is ____
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The relationship between the sides and angles of a right-angle triangle is described by trigonometry functions, sometimes known as circular functions. These trigonometric functions derive the relationship between the angles and sides of a triangle. In trigonometry, there are three primary functions of sine (sin), cosine (cos), tangent (tan). The other three main functions can be derived from the primary functions as cotangent (cot), secant (sec), and cosecant (cosec).
sin x = a/h
cos x = b/h
tan x = a/b
Tan x can also be represented as sin x/cos x
sec x = 1/cosx = h/b
cosec x = 1/sinx = h/a
cot x = 1/tan x = b/a