Question:

Let x = x(y) be the solution of the differential equation 
\(2ye^{\frac{x}{y^2}}dx+(y^2−4xe^{\frac{x}{y^2}})dy=0 \)
such that x(1) = 0. Then, x(e) is equal to

Updated On: May 17, 2024
  • e loge(2)

  • -e loge(2)

  • e2 loge(2)

  • -e2 loge(2)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct answer is (D) : -e2 loge(2)
Given differential equation
\(2ye^{\frac{x}{y^2}}dx+(y^2−4xe^{\frac{x}{y^2}})dy=0 ,x(1)=0\)
\(⇒e^{\frac{x}{y^2}}[2ydx−4xdy]=−y^2dy\)
\(⇒e^{\frac{x}{y^2}}[\frac{2ydx−4xdy}{y^4}]=\frac{−1}{y}dy\)
\(⇒2e^{\frac{x}{y^2}}d(\frac{x}{y^2})=\frac{−1}{y}dy\)
\(⇒2e^{\frac{x}{y^2}}=\) −ln ⁡y+c…(i)
Now, using x(1) = 0, c = 2
So, for x(e), Put y = e in (i)
\(2e^{\frac{x}{e^2}}=−1+2 \)
\(⇒\frac{x}{e^2}\)  =ln\(⁡(\frac{1}{2})\) ⇒x(e)= −e2ln⁡2

Was this answer helpful?
0
0

Top Questions on Differential equations

View More Questions

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Differential Equations

A differential equation is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The first-order differential equation has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y’

Second-Order Differential Equation

The equation which includes second-order derivative is the second-order differential equation. It is represented as; d/dx(dy/dx) = d2y/dx2 = f”(x) = y”.

Types of Differential Equations

Differential equations can be divided into several types namely

  • Ordinary Differential Equations
  • Partial Differential Equations
  • Linear Differential Equations
  • Nonlinear differential equations
  • Homogeneous Differential Equations
  • Nonhomogeneous Differential Equations