x | 0 | 1 | 2 | 3 | 4 |
P(x) | k | 2k | 4k | 6k | 8k |
The value of \(P(1 < X < 4 | x ≤ 2)\) is equal to
\(∵ \;x \) is a random variable
\(∴\; k + 2k + 4k + 6k + 8k = 1\)
\(∴\; k =\frac{1}{21}\)
Then, \(P(1<x<4)|x<=2)\)
=\(\frac{4k}{7k}\)
= \(\frac{4}{7}\)
Hence, the correct option is (A): \(\frac{4}{7}\)
A force \(F =\left(5+3 y^2\right)\) acts on a particle in the \(y\)-direction, where \(F\) is in newton and \(y\) is in meter The work done by the force during a displacement from \(y=2 m\) to \(y=5 m\) is___ \(J\).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).
A random variable is a variable whose value is unknown or a function that assigns values to each of an experiment's results. Random variables are often deputed by letters and can be classified as discrete, which are variables that have particular values, or continuous, which are variables that can have any values within a continuous range.
Random variables are often used in econometric or regression analysis to ascertain statistical relationships among one another.
There are two types of random variables, such as: