I=∫(x+1)2(x2+1)exdx= ƒ(x)ex+C
I= ∫(x+1)2ex(x2−1+1+1)dx
= ∫ex[x+1x−1+(x+1)22]dx
= ex(x+1x−1)+c
∴f(x)=x+1x−1
f(x)=x+11−2
f′(x)=2(x+11)2
f′′(x)=−4(x+11)3
f′′′(x)=(x+1)412
for x=1
f′′′(1)=2412
= 1612
= 43
Hence, the correct option is (B): 43